• Title/Summary/Keyword: stability limit velocity

Search Result 64, Processing Time 0.029 seconds

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet ( I ) - Lift-off and Flame Stability - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (I) - 화염의 부상과 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.160-166
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improving the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with increase of coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. In particular, lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Great flame stability was obtained since lift-off and blowout limit significantly increased with increase of OEC.

Lift-off and Flame Stability of a Coaxial Non-Premixed Jet Using Oxygen Enriched Air (산소부화공기를 이용한 동축 제트화염의 부상과 연소 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.326-331
    • /
    • 2003
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improvement of the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. Especially lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Flame stability became improved since lift-off and blowout limit increased much with increase of OEC.

  • PDF

Stability of Attached Flame in $H_2$/CO Syngas Non-premixed Turbulent Jet Flame ($H_2$/CO 합성가스 비예혼합 난류 제트화염에서 부착화염의 화염안정화)

  • Hwang, Jeong-Jae;Bouvet, Nicolas;Sohn, Ki-Tae;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.22-29
    • /
    • 2012
  • The detachment stability characteristics of syngas $H_2$/CO jet attached flames were studied. The flame stability was observed while varying the syngas fuel composition, coaxial nozzle diameter and fuel nozzle rim thickness. The detachment stability limit of the syngas single jet flame was found to decrease with increasing mole fraction of carbon monoxide in the fuel. In hydrogen jet flames with coaxial air, the flame detachment stability was found to be independent of the coaxial nozzle diameter. However, velocities of appearance of liftoff and blowout velocities of lifted flames have dependence. At lower fuel velocity range, the critical coaxial air velocity leading to flame detachment increases with increasing fuel jet velocity, whereas at higher fuel velocity range, it decreases. This increasing-decreasing non-monotonic trend appears for all $H_2$/CO syngas compositions (50/50~100/0% $H_2$/CO). To qualitatively understand the flame behavior near the nozzle rim, $OH^*$ chemiluminescence imaging was performed near the detachment limit conditions. For all fuel compositions, local extinction on the rim is observed at lower fuel velocities(increasing stability region), while local flame extinction downstream of the rim is observed at higher fuel velocities(decreasing stability region). Maximum values of the non-monotonic trends appear to be identical when the fuel jet velocity is normalized by the critical fuel velocity obtained in the single jet cases.

Numerical Study on the Isothermal Flow Field abound Rectangular Cross Section Bluff Body (사각형 둔각물체 주위의 유동장 특성에 관한 수치적 연구)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.35-41
    • /
    • 2012
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to complement the previous experimental results of the bluff body stabilized flames [1]. For both fuel ejection configurations against an oxidizer stream, the flame stability was affected mainly by vortex structure and mixing field near bluff body. FDS(Fire Dynamic Simulator) based on the LES(Large Eddy Simulation) was employed to clarify the isothermal mixing characteristic and wake flow pattern around bluff body. The air used atmosphere and the fuel used methane. The result of counter flow configuration shows that the flow field depends on air velocity but the mixing field is influenced on the fuel velocity. At low fuel velocity the fuel mole fraction is below the flammable limit and hence the mixing is insufficient to react. Therefore, as the result, the flame formed at low fuel velocity is characterized by non-premixed flames. For the flow field of co-flow configuration, flame stability was affected by fuel velocity as well as air velocity. the vortex generated by fuel stream has counter rotating direction against the air stream. Therefore, the momentum ratio between air and fuel stream was important to decide the flame blow out limit, which is result in the characteristic of the partially premixed reacting wake near extinction.

The Effects of TENS Applied to Affected Lower Extremities on Balance in Stroke Patients

  • Lee, Kyu-Ri;Jang, Sang-Hun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.255-262
    • /
    • 2014
  • PURPOSE: This study was to investigate the effectiveness of TENS on balance in stroke patients by analyzing some components such as foot pressure, limit of stability and velocity sway after providing somatosensroy input using TENS. METHODS: Twenty five subjects participated and were randomly divided into two groups, TENS group (n=13) and control group (n=12) by the computer program. Interventions were given to subjects 5 days a week for four weeks. TENS group were treated with TENS for 60 minutes in addition to the conventional therapy which included 30-minute exercise and rehabilitation ergometer training for 15 minutes. Control group performed only conventional therapy. TENS was applied on the skin of soleus, tibialis anterior, tensor fascia latae and vastus medialis in affected side. Foot pressure, limit of stability and velocity sway for balance test were measured using Biorescue. RESULTS: TENS group was significantly increased limit of stability and foot pressure in affected side more than control group. And in eye closed condition, TENS group was significantly decreased velocity sway more than control group. CONCLUSION: The application of TENS is effective to improve the somatosensory input of affected side and to increase the motor function and balance ability.

Effect on the Limit of Stability of the Lowered Center of Mass With a Weight Belt

  • Phan, Jimmy;Wakumoto, Kaylen;Chen, Jeffrey;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.155-161
    • /
    • 2020
  • Background: The consequences of falls are often debilitating, and prevention is important. In theory, the lower the center of mass (COM), the greater postural stability during standing, and a weight belt at the waist level may help to lower the COM and improve the standing balance. Objects: We examined how the limit of stability (LOS) was affected by the lowered center of mass with the weight belt. Methods: Twenty healthy individuals participated in the LOS test. After calculating each participant's COM, a weight belt was fastened ten centimeters below the COM. Trials were acquired with five weight belt conditions: 0%, 2%, 4%, 6%, and 8% of body weight. Outcome measures included reaction time, movement velocity, endpoint excursion, maximum excursion, and directional control in 4 cardinal moving directions. Results: None of our outcome variables were associated with a weight belt (p > 0.075), but all of them were associated with moving direction (p < 0.01). On average, movement velocity of the COM and maximum excursion were 31% and 18% greater, respectively, in mediolateral than anteroposterior direction (5.4°/s vs. 4.1°/s; 97.5% vs. 82.6%). Conclusion: Our results suggest that postural stability was not affected by the weight-induced lowered COM, informing the development and improvement of balance training strategies.

Recursive Bayesian Filter based Strike Velocity Estimation for Small Caliber Projectile (재귀적 베이시안 필터를 적용한 소화기탄의 충돌속도 추정 연구)

  • Kim, Jong-Hwan;Jo, Seungsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • This paper presents a strike velocity estimation using the recursive Bayesian filter that operates both correction and prediction models to probabilistically remove noises of sensors and accurately estimate the strike velocity during the real-time experiments. Four different types of bullets such as 5.56 mm M193, 7.62 mm M80, 5.45 mm 7N10 and 7.62 mm MSC were used to validate the proposed method. Compared to the existing method, the proposed method statistically results in higher stability of the strike velocity estimation as well as its reliability for the ballistic limit velocity computation.

A Study on the Limit Capacity Calculation for Thermal plant based on Air Pollution Control (대기오염에 따른 화력발전소의 한계용량산전에 관한 연구)

  • Yim Han Suck
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.95-98
    • /
    • 1977
  • Commercially available fuel oil for power plant contains relatively much sulphur, which means accordingly high content sulphur deoxide in exhaust gas. Sulphur deoxide has been identified as the worst-pollutant caused by thermal power generation. This paper primarily deals with the stack gas diffusion effects of various parameters, namely vertical stability, wind velocity, exhaust gas velocity, stack height, etc., on the ground concentration. thereof the relation between stack height and maximum plant capacity is analyzed from the standpoint of air pollution prevention. The limit capacity is calculated by means of mean concentration introducing Mead and Lowry coefficient respectively.

  • PDF

Stabilization of Lean Premixed Flames by a Heated Cylindrical Rod;The Role of Heat Flux (가열된 원통형보염기에 의한 희박 예혼합화염의 보염;열유속의 역할)

  • Seo, Dong-Kyu;Lee, Won-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1372-1377
    • /
    • 2003
  • The stabilization of propane/air lean premixed flames by a heated cylindrical rod is investigated experimentally. The flame stability limits, heat flux, surface temperatures, equivalence ratios, and mixture velocities are measured in order to understand the role of heat flux or surface temperature on the flame stabilization of lean premixed flames. The flame stability limits are lowered by a heated cylindrical rod and extended even below the flammability limit of propane/air mixture when sufficient heat flux is provided. The flame stability limit decreases with the increase of heat flux or surface temperature and decreases with the higher mixture velocity. The diameter of cylindrical rod, however, dose not significantly affect the flame stability limit. The laminar flame speed has been measured for ultra lean propane/air premixed flames. The flame stabilization by a heated cylindrical rod provides the useful tool for the measurement of flame speed under very fuel-lean conditions.

  • PDF

Stability Characteristics of Syngas($H_2$/CO)/Air Premixed Flames using an Impinging Jet Burner (충돌제트 버너에서 합성가스($H_2$/CO)/공기 예혼합화염의 안정화 특성)

  • Park, Ju-Yong;Lee, Kee-Man;Hwang, Cheol-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • An experimental study was conducted to investigate the flame stability of the synthetic gas (syngas) using an impinging premixed jet burner. Since the syngas mainly consisted of $H_2$ and CO, the $H_2$/CO mixture was simulated as the syngas. $H_2$/CO mixture ratios, fuel/air mixture velocities and equivalence ratios were used as major parameters on the flame stabilitym The role of the impinging plate on the flame stability was also examined. In addition, laminar burning velocities of the $H_2$/CO mixture were predicted numerically to understand the characteristics of the flame stability for the syngas. The increase in the H2 concentration into the syngas brings about the extension of the blowout limit and the reduction in the flashback limit in terms of the stable flame region. The impinging jet plate broadened the blowout limit but does not play important role in changing of the flashback limit. Finally, it was found that the stability region of the flame using the syngas, which is expressed in terms of the mixture velocity and the equivalence ratio in this study, significantly differed from that of $CH_4$.