• 제목/요약/키워드: stability functions

검색결과 923건 처리시간 0.031초

Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory

  • Ferruh Turan
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.145-161
    • /
    • 2023
  • This study investigates the influences of porosity on the stability of the orthotropic laminated plates under uniaxial and biaxial loadings based on the hyperbolic shear deformation theory. Three different porosity distribution are considered with three specific functions through the plate thickness. The stability equations of porous orthotropic laminated plates are derived by the virtual work principle. Applying the Galerkin method to partial differential equations, the critical buckling load relation of porous orthotropic laminated plates is obtained. After validating the accuracy of the proposed formulation in accordance with the available literature, a parametric analysis is performed to observe the sensitivity of the critical buckling load to shear deformation, porosity, orthotropy, loading factor, and different geometric properties.

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

Nonlinear dynamic stability and vibration analysis of sandwich FG-CNTRC shallow spherical shell

  • Kamran Foroutan;Akin Atas;Habib Ahmadi
    • Advances in nano research
    • /
    • 제17권2호
    • /
    • pp.95-107
    • /
    • 2024
  • In this article, the semi-analytical method was used to analyze the nonlinear dynamic stability and vibration analysis of sandwich shallow spherical shells (SSSS). The SSSS was considered as functionally graded carbon nanotube-reinforced composites (FG-CNTRC) with three new patterns of FG-CNTRC. The governing equation was obtained and discretized utilizing the Galerkin method by implementing the von Kármán-Donnell nonlinear strain-displacement relations. The nonlinear dynamic stability was analyzed by means of the fourth-order Runge-Kutta method. Then the Budiansky-Roth criterion was employed to obtain the critical load for the dynamic post-buckling. The approximate solution for the deflection was represented by suitable mode functions, which consisted of the three modes of transverse nonlinear oscillations, including one symmetrically and two asymmetrical mode shapes. The influences of various geometrical characteristics and material parameters were studied on the nonlinear dynamic stability and vibration response. The results showed that the order of layers had a significant influence on the amplitude of vibration and critical dynamic buckling load.

동일 빈도 이산화를 가상 경기에 적용한 연속형 최적화 알고리즘 (A Continuous Optimization Algorithm Using Equal Frequency Discretization Applied to a Fictitious Play)

  • 이창용
    • 산업경영시스템학회지
    • /
    • 제36권2호
    • /
    • pp.8-16
    • /
    • 2013
  • In this paper, we proposed a new method for the determination of strategies that are required in a continuous optimization algorithm based on the fictitious play theory. In order to apply the fictitious play theory to continuous optimization problems, it is necessary to express continuous values of a variable in terms of discrete strategies. In this paper, we proposed a method in which all strategies contain an equal number of selected real values that are sorted in their magnitudes. For comparative analysis of the characteristics and performance of the proposed method of representing strategies with respect to the conventional method, we applied the method to the two types of benchmarking functions: separable and inseparable functions. From the experimental results, we can infer that, in the case of the separable functions, the proposed method not only outperforms but is more stable. In the case of inseparable functions, on the contrary, the performance of the optimization depends on the benchmarking functions. In particular, there is a rather strong correlation between the performance and stability regardless of the benchmarking functions.

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

Stability Analysis and Proposal of a Simple Form of a Fuzzy PID Controller

  • Lee, Byung-Kyul;Kim, In-Hwan;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1299-1312
    • /
    • 2004
  • This paper suggests the simple form of a fuzzy PID controller and describes the design principle, tracking performance, stability analysis and changes of parameters of a suggested fuzzy PID controller. A fuzzy PID controller is derived from the design procedure of fuzzy control. It is well known that a fuzzy PID controller has a simple structure of the conventional PID controller but posses its self-tuning control capability and the gains of a fuzzy PID controller become nonlinear functions of the inputs. Nonlinear calculation during fuzzification, defuzzification and the fuzzy inference require more time in computation. To increase the applicability of a fuzzy PID controller to digital computer, a simple form of a fuzzy PID controller is introduced by the backward difference mapping and the analysis of the fuzzy input space. To guarantee the BIBO stability of a suggested fuzzy PID controller, ‘small gain theorem’ which proves the BIBO stability of a fuzzy PI and a fuzzy PD controller is used. After a detailed stability analysis using ‘small gain theorem’, from which a simple and practical method to decide the parameters of a fuzzy PID controller is derived. Through the computer simulations for the linear and nonlinear plants, the performance of a suggested fuzzy PID controller will be assured and the variation of the gains of a fuzzy PID controller will be investigated.

이중화 구조를 가진 변전소자동화시스템의 개발 (The Development of Dual Structured Power Management System)

  • 우천희;이보인
    • 전기학회논문지P
    • /
    • 제59권3호
    • /
    • pp.275-288
    • /
    • 2010
  • In order to improve the quality of electricity in large scale power systems, stability of power system has to be achieved. This can be done by the means of preventative diagnosis of power equipments and protection, monitoring and control of the power system. Since the recent adoption of digital controllers, an improvement in stability was observed; in particular, IED, which contained self-diagnostic abilities such as fault tolerance, allowed for automatic recovery via redundancy or switching-over functions should there be faults with the equipments. Furthermore, communication lines have been hugely simplified, thus adding to the improvement in stability significantly. Taking these error reports and forecasting emergency reports and by effectively responding to them in the overiding controlling systems, high levels of system stability can be obtained. Power Management System that is being applied to automated power sub-stations, takes the IEC61850 international standard as its specification. In this paper, additional research into achieving stability of already developed PMS system and also the stability of the overall system was carried out, and the results of development of communication servers, which play a pivotal role in connecting systems, are stated.

분자 동역학 방식을 사용한 전역 최적화 기법에 관한 연구 (A Study on the Global Optimization Technique Based upon Molecular Dynamics)

  • 최덕기;김재윤
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1223-1230
    • /
    • 1999
  • This paper addresses a novel optimization technique based on molecular dynamics simulation which has been utilized for physical model simulation at various disciplines. In this study, objective functions are considered to be potential functions, which depict molecular interactions. Comparisons of typical optimization method such as the steepest descent and the present method for several test functions are made. The present method shows applicability and stability in finding a global optimum.

A Delay-Dependent Approach to Robust Filtering for LPV Systems with Discrete and Distributed Delays using PPDQ Functions

  • Karimi Hamid Reza;Lohmann Boris;Buskens Christof
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.170-183
    • /
    • 2007
  • This paper presents a delay-dependent approach to robust filtering for linear parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states and outputs. It is assumed that the state-space matrices affinely depend on parameters that are measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are established in terms of linear matrix inequalities (LMIs) such that the filtering process remains asymptotically stable and satisfies a prescribed $H_{\infty}$ performance level. Using polynomially parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we establish the parameter-independent delay-dependent conditions with high precision under which the desired robust $H_{\infty}$ filters exist and derive the explicit expression of these filters. A numerical example is provided to demonstrate the validity of the proposed design approach.

THE STABILIZATION OF PROGRAM MOTIONS OF CONTROLLED NONLINEAR MECHANICAL SYSTEMS

  • Bezglasnyi, Sergey
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.251-266
    • /
    • 2004
  • We consider a controlled nonlinear mechanical system described by the Lagrange equations. We determine the control forces $Q_1$ and the restrictions for the perturbations $Q_2$ acting on the mechanical system which allow to guarantee the asymptotic stability of the program motion of the system. We solve the problem of stabilization by the direct Lyapunov's method and the method of limiting functions and systems. In this case we can use the Lyapunov's functions having nonpositive derivatives. The following examples are considered: stabilization of program motions of mathematical pendulum with moving point of suspension and stabilization of program motions of rigid body with fixed point.