• 제목/요약/키워드: stability functions

검색결과 923건 처리시간 0.028초

Method of Numerical Simulation by Using the Local Harmonic Functions in the Cylindrical Coordinates (국소적 조화함수를 사용한 원통좌표계에서의 유동 해석)

  • Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제31권3호
    • /
    • pp.300-305
    • /
    • 2007
  • Many practical flow problems are defined with the circular boundary. Fluid flows within a circular boundary are however susceptible to a singularity problem when the cylindrical coordinates are employed. To remove this singularity a method has been developed in this study which uses the local harmonic functions in discretization of derivatives as well as interpolation. This paper describes the basic reason for introducing the harmonic functions and the overall numerical methods. The numerical methods are evaluated in terms of the accuracy and the stability. The Lamb-dipole flow is selected as a test flow. We will see that the harmonic-function method indeed gives more accurate solutions than the conventional methods in which the polynomial functions are utilized.

Test bed for Advanced function of Smart Inverter and Results Based on Real-Time Simulation Platform (실시간 시뮬레이터 기반의 스마트 인버터 제어기능 시험 환경 구축 및 시험 결과)

  • Sim, Junbo;Ban, Minho;Lim, Hyeonok;Cho, Seong-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.107-114
    • /
    • 2021
  • High penetration of renewable energy generators causes unnecessary investment for power system facilities. Especially with Korean government policies such as Renewable Energy 3020 and Inter-connection support Responsibility of KEPCO for 1 MW DERs, the applications of DER interconnection in distribution system have been increasing. To save the investment, smart control functions for DERs are required and the test bed for the inverters which have not been prepared are necessary to insure DER inter-connection stability. For this, test bed for advanced functions of a smart inverter has been constructed and the tests for necessary functions have been implemented. In this paper, the test bed and environment as well as specifications are introduced and the test results for the validation of the functions are analyzed.

STABILITY ANALYSIS FOR PREDATOR-PREY SYSTEMS

  • Shim, Seong-A
    • The Pure and Applied Mathematics
    • /
    • 제17권3호
    • /
    • pp.211-229
    • /
    • 2010
  • Various types of predator-prey systems are studied in terms of the stabilities of their steady-states. Necessary conditions for the existences of non-negative constant steady-states for those systems are obtained. The linearized stabilities of the non-negative constant steady-states for the predator-prey system with monotone response functions are analyzed. The predator-prey system with non-monotone response functions are also investigated for the linearized stabilities of the positive constant steady-states.

A study on the observer design of bilinear system via walsh function (WALSH 함수에 의한 쌍일차계의 관측자설계에 관한 연구)

  • 안두수;김종부
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.115-119
    • /
    • 1987
  • In this paper the observer design problem in bilinear systems is studied using the Walsh functions as approximating set of functions to find a finite series expansion of the state of bilinear system. A classical Liapnove method, to finding a class of observer feedback matrix, is applied to ensure uniform asymptotic stability of the observation error dynamics. An algorithm is derived for observer state eq. via Walsh function. The basic objective is to develop a computational algorithm for the determination of the coefficients in the expansion. This approach technique gives satisfactory result as well provides precise and effective method for the bilinear observer design problem.

  • PDF

ON STABILITY OF NONLINEAR NONAUTONOMOUS SYSTEMS BY LYAPUNOV'S DIRECT METHOD

  • Park, Jong-Yeoul;Phat, Vu-Ngoc;Jung, Il-Hyo
    • Journal of the Korean Mathematical Society
    • /
    • 제37권5호
    • /
    • pp.805-821
    • /
    • 2000
  • The paper deals with asymtotic stabillity of nonlinear nonautinomous systems by Lyapunov's direct method. The proposed Lyapunov-like function V(t, x) needs not be continuous in t and Lipschitz in x in a Banach space. The class of systems considered is allowed to be nonautonomous and infinite-dimensional and we relax the boundedness, the Lipschitz assumption on the system and the definite decrescent condition on the Lyapunov function.

  • PDF

APPROXIMATE GENERALIZED EXPONENTIAL FUNCTIONS

  • Lee, Eun-Hwi
    • Honam Mathematical Journal
    • /
    • 제31권3호
    • /
    • pp.451-462
    • /
    • 2009
  • In this paper we prove the superstability of a generalized exponential functional equation $f(x+y)=a^{2xy-1}g(x)f(y)$. It is a generalization of the superstability theorem for the exponential functional equation proved by Baker. Also we investigate the stability of this functional equation in the following form : ${\frac{1}{1+{\delta}}}{\leq}{\frac{f(x+y)}{a^{2xy-1}g(x)f(y)}}{\leq}1+{\delta}$.

Robust feedback error learning neural networks control of robot systems with guaranteed stability

  • Kim, Sung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.197-200
    • /
    • 1996
  • This paper considers feedback error learning neural networks for robot manipulator control. Feedback error learning proposed by Kawato [2,3,5] is a useful learning control scheme, if nonlinear subsystems (or basis functions) consisting of the robot dynamic equation are known exactly. However, in practice, unmodeled uncertainties and disturbances deteriorate the control performance. Hence, we presents a robust feedback error learning scheme which add robustifying control signal to overcome such effects. After the learning rule is derived, the stability is analyzed using Lyapunov method.

  • PDF

WEAK CONVERGENCE THEOREMS IN FEYNMAN'S OPERATIONAL CALCULI : THE CASE OF TIME DEPENDENT NONCOMMUTING OPERATORS

  • Ahn, Byung Moo
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제25권3호
    • /
    • pp.531-541
    • /
    • 2012
  • Feynman's operational calculus for noncommuting operators was studied by means of measures on the time inteval. And various stability theorems for Feynman's operational calculus were investigated. In this paper we see the time-dependent stability properties when the operator-valued functions take their values in a separable Hilbert space.

FEYNMAN′S OPERATIONAL CALCULI FOR TIME DEPENDENT NONCOMMUTING OPERATORS

  • Brian Jefferies
    • Journal of the Korean Mathematical Society
    • /
    • 제38권2호
    • /
    • pp.193-226
    • /
    • 2001
  • We study Feynman's Operational Calculus for operator-valued functions of time and for measures which are not necessarily probability measures; we also permit the presence of certain unbounded operators. further, we relate the disentangling map defined within the solutions of evolution equations and, finally, remark on the application of stability results to the present paper.

  • PDF

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • 제23권3호
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.