• Title/Summary/Keyword: stability charts

Search Result 53, Processing Time 0.028 seconds

Stability analysis of homogeneous slopes with benches

  • Zhao, Lianheng;Xia, Peng;Xie, Rongfu;Li, Liang;Zhang, Yingbin;Cheng, Xiao
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.517-533
    • /
    • 2017
  • In this paper, with a graphical approach, a series of stability charts for homogeneous slopes with benches are presented based on the upper bound limit analysis theory and strength reduction technique. The objective function of the slope safety factor $F_s$ is optimized by the nonlinear sequential quadratic programming, and a substantial number of examples are illustrated to use the stability charts for homogeneous slopes with benches driven by only the action of the soil weight. These charts can be applied to quick and accurate estimations of the stability status of homogeneous slopes with benches. Moreover, the failure modes and the formula for safety factor Fs of homogeneous slopes with benches are provided to illustrate the stability analysis of slopes with benches, which is validated by samples.

Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design

  • Deng, Dong-ping;Lia, Liang;Zhao, Lian-heng
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.181-194
    • /
    • 2019
  • Due to the seepage of groundwater, the resisting force of slopes decreases and the sliding force increases, resulting in significantly reduced slope stability. The instability of most natural slopes is closely related to the influence of groundwater. Therefore, it is important to study slope stability under groundwater seepage conditions. Thus, using a simplified seepage model of groundwater combined with the analysis of stresses on the slip surface, the limit equilibrium (LE) analytical solutions for two- and three-dimensional slope stability under groundwater seepage are deduced in this work. Meanwhile, the general nonlinear Mohr-Coulomb (M-C) strength criterion is adopted to describe the shear failure of a slope. By comparing the results with the traditional LE methods on slope examples, the feasibility of the proposed method is verified. In contrast to traditional LE methods, the proposed method is more suitable for analyzing slope stability under complex conditions. In addition, to facilitate the optimization of drainage design in the slope, stability charts are drawn for slopes with different groundwater tables. Furthermore, the study concluded that: (1) when the hydraulic gradient of groundwater is small, the effect on slope stability is also small for a change in the groundwater table; and (2) compared with a slope without a groundwater table, a slope with a groundwater table has a larger failure range under groundwater seepage.

Investigation of slope reinforcement with drilled shafts in colluvium soils

  • Lia, An-Jui;Wang, Wei-Chien;Lin, Horn-Da
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.71-86
    • /
    • 2022
  • In Taiwan, an efficient approach for enhancing the stability of colluvium slopes is the drilled shaft method. For slopes with drilled shafts, the soil arching effect is one of the primary factors influencing slope stability and intertwines to the failure mechanism of the pile-soil system. In this study, the contribution of soil arching effect to slope stability is evaluated using the FEM software (Plaxis 3D) with the built-in strength reduction technique. The result indicates the depth of the failure surface is influenced by the S/D ratio (the distance to the diameter of piles), which can reflect the contribution of the soil arching effect to soil stability. When α (rock inclination angles)=β (slope angles) is considered and the S/D ratio=4, the failure surface of the slope is not significantly influenced by the piles. Overall, the soil arching effect is more significant on α=β, especially for the steep slopes. Additionally, the soil arching effect has been included in the proposed stability charts. The proposed charts were validated through two case studies, including that of the well-known Woo-Wan-Chai field in Taiwan. The differences in safety factor (FoS) values between the referenced literature and this study was approximately 4.9%.

A comparative study on slope stability by program and stability cahrt (프로그램과 도표에 의한 사면안정해석의 비교연구)

  • Ju, Gyeong-Hun;Kim, Ju-Cheol;Lee, Jong-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.253-258
    • /
    • 1994
  • Recently, computer technique for the analysis of slope stability enable to reduce a considerable time and efforts. And also, stability problems can be approached by using stablility chart which was basically developed to handle the problems under simple conditions only. Most of the conventional slope stability computer programs and stability chart are still based on the general limit equilibrium method. 16 types of sample slopes and 2 types of failure slope were compared and analysed by stability charts and programs. This research work intend to apply 4 types of conventional computer programs based on the same theoretical backgroung and 7 types of stability charts for solving the same stability problems and the results and compared and analysed in order to justify their reliability.

  • PDF

A Study of Reinforced Design Chart for Soil Nailing Slopes (Soil Nailing 공법을 적용하기 위한 사면보강 설계도표에 관한 연구)

  • Seo, Jin-Won;Kim, Hak-Moon;Jang, Kyung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1009-1019
    • /
    • 2009
  • Soil nailing method is widely used in reinforcing slopes and excavating earth. The analysis of nail-reinforced slopes, in order to determine the economical length ratio and nail angle, complicated analytical need to be applied by means of computer programs. Therefor this suggested Soil stability Chart for nailed slopes which may be very useful for pre-design, rapidly design, and final check. Three slope types, three nail length and three nail angles are selected for the stability analysis by using limit equilibrium method of Bishop and French Method. From the above results, this study propose the slope reinforced design charts for dry season and rainy season. This proposed reinforced design charts can check dry season as well as rainy season, also these charts can provide reinforcing requirement, soil nail's economical length ratio and nail angle as well.

  • PDF

Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope

  • Xu, Jingshu;Li, Yongxin;Yang, Xiaoli
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.71-81
    • /
    • 2018
  • Soils are mostly nonhomogeneous and anisotropic in nature. In this study, nonhomogeneity and anisotropy of soil are taken into consideration by assuming that the cohesion increases with depth linearly and also varies with respect to direction at a particular point. A three-dimensional rotational failure mechanism is adopted, and then a three-dimensional stability analysis of slope is carried out with the failure surface in the shape of a curvilinear cone in virtue of the limit analysis method. A quasistatic approach is used to develop stability charts in nonhomogeneous and anisotropic soils. One can easily read the safety factors from the charts without the need for iterative procedures for safety factors calculation. The charts are of practical importance to prevent a plane failure in excavation slope whether it is physically constrained or not. Then the most suitable location of piles within the reinforced slope in nonhomogeneous and anisotropic soils is explored, as well as the interactions of nonhomogeneous and anisotropic coefficients on pile reinforcement effects. The results indicate that piles are more effective when they are located between the middle and the crest of the slope, and the nonhomogeneous coefficient as well as the anisotropic coefficient will not only influence the most suitable location for piles but also affect the calculated safety factor of existing reinforced slope. In addition, the two coefficients will interact with each other on the effect on slope reinforcement.

A Study on the Development of Stability Charts for Reinforced Embankments by Geotextile (Geotelrtile 보강사면의 안정도표개발에 관한 연구)

  • 서인식
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 1997
  • This paper presents the deterministic model to evaluate the two dimensional stability of geotextile-reinforced embankments on soft foundations. The potential failure surfaces in this study are assumed as the logarithmic spiral curves refracted at the boundary of layers. To facilitate the iterative calculations, we developed a program that determines the geotextile tensile force for an geoteztile-reinforced embankments. This program can be used for situations with a varying number of soil layers and soil types. A series of calculations have been made for a schematised situation. The results of these series are collected in stability charts, which are compared with those by circular potential failure surfaces. Using these charts in an early stage of the design provides a reasonable estimate of the stability of geotextile-reinforced embankments. In a later stage a more detailed calculation can be made by the developed programs.

  • PDF

The Design Charts for Soil Nailing Slopes Through Limit Equilibrium Method (한계평형해석을 사용한 Soil Nailing보강사면의 설계도표의 제안)

  • Kim, Hak-Moon;Jang, Kyung-Jun;Seo, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2794-2802
    • /
    • 2009
  • Soil nailing method is widely used in reinforcing slopes and excavating earth. The analysis of nail-reinforced slopes, generally require complicated computer programs. The purpose of this paper is suggest, Soil stability Chart for nailed slopes which are very useful for pre-design, rapidly design, and final check. Three slope types, three nail lengths and three nail angles are selected for the stability analysis by using limit equilibrium method form Bishop and French. From the above results, this study propose the reinforced design charts for examine the necessity of reinforcement can be examined. The suggested stability chart and Taylor's Slope Stability Chart, showed similar safety factors. This Soil Nailing design charts can provide the solutions for necessity of reinforcement, economical of nail's length ratio and installation angle as well.

The Z-CUSUM Control Chart for the Process with Recurring Cycles or Frequent Small Shifts (순환주기나 빈번한 작은 이동이 발생하는 공정관리틀 위한 Z-CUSUM 관리도)

  • 강해운;강창욱;백재원
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.2
    • /
    • pp.132-153
    • /
    • 2004
  • CUSUM control charts are widely used to monitor processes with small shifts. CUSUM control charts are, however, less effective in detecting for recurring cycles or frequent small shifts in the processes. With Shewhart control charts, we have applied the variety of run rules to check the stability of process in addition to the situations that some points fall outside the control limits. In this paper, we propose the Z -CUSUM control chart for monitoring the process with recurring cycles or frequent small shifts by use of the zone concept as like the Shewhart control charts.

The Z-CUSUM Control Chart for the Process with Recurring Cycles or Frequent Small Shifts (순환 주기나 빈번한 작은 이동이 발생하는 공정관리를 위한 Z-CUSUM 관리도)

  • Kang Hae Woon;Kang Chang Wook;Paik Jae Won
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.57-63
    • /
    • 2004
  • CUSUM control charts are widely used to monitor processes with small shifts. CUSUM control charts, however, are less effective in detecting for recurring cycles or frequent small shifts in the process. With Shewhart control charts, we have applied the variety of run rules to check the stability of process in addition to the situations that some points fall outside the control limits. In this paper, we propose the Z-CUSUM control chart for monitoring the process with recurring cycles or frequent small shifts by use of the zone concept as like the Shewhart control charts.

  • PDF