• Title/Summary/Keyword: stability/instability

Search Result 1,266, Processing Time 0.037 seconds

Surface effects on flutter instability of nanorod under generalized follower force

  • Xiao, Qiu-Xiang;Zou, Jiaqi;Lee, Kang Yong;Li, Xian-Fang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.723-730
    • /
    • 2017
  • This paper studies on dynamic and stability behavior of a clamped-elastically restrained nanobeam under the action of a nonconservative force with an emphasis on the influence of surface properties on divergence and flutter instability. Using the Euler-Bernoulli beam theory incorporating surface effects, a governing equation for a clamped-elastically restrained nanobeam is derived according to Hamilton's principle. The characteristic equation is obtained explicitly and the force-frequency interaction curves are displayed to show the influence of the surface effects, spring stiffness of the elastic restraint end on critical loads including divergence and flutter loads. Divergence and flutter instability transition is analyzed. Euler buckling and stability of Beck's column are some special cases of the present at macroscale.

A Combustion Instability Analysis of a Model Gas Turbine Combustor by the Transfer Matrix Method

  • Cha, Dong-Jin;Kim, Jay-H.;Joo, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2946-2951
    • /
    • 2008
  • Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use the advantages of not only the transfer matrix method but also well-established classic control theories. The approach is applied to a simple gas turbine combustion system to demonstrate the validity and effectiveness of the approach.

  • PDF

Structual Stability Analysis According to the Lumped Mass of High Speed Vehicles in Underwater (집중질량 변화에 따른 수중 고속 운동체의 구조 안정성 해석)

  • Oh, Kyung-Won;Sur, Joo-No;Cho, Byung-Gu;Ryu, Si-Ung;Kong, Gong-Duk
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-59
    • /
    • 2009
  • In this paper, the effect of the position and size of a lumped mass on the structural stability of a high speed underwater vehicle is presented. For simplicity, a real vehicle was modeled as a follower force subjected beam that was resting on an elastic foundation, and the lumped mass effect was simplified as an elastic intermediate support. The stability of the simplified model was numerically analyzed based on the Finite element method (FEM). This numerical simulation revealed that flutter type instability or divergence type instability occurs, depending on the position and stiffness of the elastic intermediate support, which implies that the instability of the real model is affected by the position and size of the lumped mass.

Mechanism analysis on fluidelastic instability of tube bundles in considering of cross-flow effects

  • Lai, Jiang;Sun, Lei;Gao, Lixia;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.310-316
    • /
    • 2019
  • Fluidelastic instability is a key issue in steam generator tube bundles subjected in cross-flow. With a low flow velocity, a large amplitude vibration of the tube observed by many researchers. However, the mechanism of this vibration is seldom analyzed. In this paper, the mechanism of cross-flow effects on fluidelastic instability of tube bundles was investigated. Analysis reveals that when the system reaches the critical state, there would be two forms, with two critical velocities, and thus two expressions for the critical velocities were obtained. Fluidelastic instability experiment and numerical analysis were conducted to obtain the critical velocity. And, if system damping is small, with increases of the flow velocity, the stability behavior of tube array changes. At a certain flow velocity, the stability of tube array reaches the first critical state, a dynamic bifurcation occurs. The tube array returns to a stable state with continues to increase the flow velocity. At another certain flow velocity, the stability of tube array reaches the second critical state, another dynamic bifurcation occurs. However, if system damping is big, there is only one critical state with increases the flow velocity. Compared the results of experiments to numerical analysis, it shows a good agreement.

The Generic Analysis Method for Core Flow Instability

  • Jun, Byung-Soon;Park, Eung-Jun;Park, Jong-Ryool
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.335-341
    • /
    • 1997
  • The generic analysis method for core flow instability is suggested to confirm that the core flow instability would not occur on PWR conditions. For the confirmation, the stability criteria of each fuel type are provided. Instability investigations in various accident conditions prove that the locked rotor accident is the most limiting case to instability. Parametric Effects are surveyed and in good agreement with available studies. The effects of heat flux distribution become negligible as the subcooling number is decreased. The power margin to instability is calculated quantitatively in various accident conditions.

  • PDF

PARKER-JEANS INSTABILITY IN THE GALACTIC GASEOUS DISK. I. LINEAR STABILITY ANALYSIS AND TWO-DIMENSIONAL MHD SIMULATIONS

  • LEE S. M.;KIM JONGSOO;FRANCO J.;HONG S. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.249-255
    • /
    • 2004
  • Here we present a linear stability analysis and an MHD 2D model for the Parker-Jeans instability in the Galactic gaseous disk. The magnetic field is assumed parallel to a Galactic spiral arm, and the gaseous disk is modelled as a multi-component, magnetized, and isothermal gas layer. The model employs the observed vertical stratifications for the gas density and the gravitational acceleration in the Solar neighborhood, and the self-gravity of the gas is also included. By solving Poisson's equation for the gas density stratification, we determine the vertical acceleration due to self-gravity as a function of z. Subtracting it from the observed gravitational acceleration, we separate the total acceleration into self and external gravities. The linear stability analysis provides the corresponding dispersion relations. The time and length scales of the fastest growing mode of the Parker-Jeans instability are about 40 Myr and 3.3 kpc, respectively. In order to confirm the linear stability analysis, we have performed two-dimensional MHD simulations. These show that the Parker-Jeans instability under the self and external gravities evolves into a quasi-equilibrium state, creating condensations on the northern and southern sides of the plane, in an alternate manner.

Stability/instability of the graphene reinforced nano-sized shell employing modified couple stress model

  • Yao, Zhigang;Xie, Hui;Wang, Yulei
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.31-46
    • /
    • 2021
  • The current research deals with, stability/instability and cylindrical composite nano-scaled shell's resonance frequency filled by graphene nanoplatelets (GPLs) under various thermal conditions (linear and nonlinear thermal loadings). The piece-wise GPL-reinforced composites' material properties change through the orientation of cylindrical nano-sized shell's thickness as the temperature changes. Moreover, in order to model all layers' efficient material properties, nanomechanical model of Halpin-Tsai has been applied. A functionally modified couple stress model (FMCS) has been employed to simulate GPLRC nano-sized shell's size dependency. It is firstly investigated that reaching the relative frequency's percentage to 30% would lead to thermal buckling. The current study's originality is in considering the multifarious influences of GPLRC and thermal loading along with FMCS on GPLRC nano-scaled shell's resonance frequencies, relative frequency, dynamic deflection, and thermal buckling. Furthermore, Hamilton's principle is applied to achieve boundary conditions (BCs) and governing motion equations, while the mentioned equations are solved using an analytical approach. The outcomes reveal that a range of distributions in temperature and other mechanical and configurational characteristics have an essential contribution in GPLRC cylindrical nano-scaled shell's relative frequency change, resonance frequency, stability/instability, and dynamic deflection. The current study's outcomes are practical assumptions for materials science designing, nano-mechanical, and micromechanical systems such as micro-sized sensors and actuators.

Nature of the Wiggle Instability of Galactic Spiral Shocks

  • Kim, Woong-Tae;Kim, Yonghwi;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2014
  • Gas in disk galaxies interacts nonlinearly with a underlying stellar spiral potential to form galactic spiral shocks. Numerical simulations typically show that these shocks are unstable to the wiggle instability, forming non-axisymmetric structures with high vorticity. While previous studies suggested that the wiggle instability may arise from the Kelvin-Helmholtz instability or orbit crowding of gas elements near the shock, its physical nature remains uncertain. It was even argued that the wiggle instability is of numerical origin, caused by the inability of a numerical code to resolve a shock that is inclined to numerical grids. In this work, we perform a normal-mode linear stability analysis of galactic spiral shocks as a boundary-value problem. We find that the wiggle instability originates physically from the potential vorticity generation at a distorted shock front. As the gas follows galaxy rotation, it periodically passes through multiple shocks, successively increasing its potential vorticity. This sets up a normal-mode that grows exponentially, with a growth rate comparable to the orbital angular frequency. We show that the results of our linear stability analysis are in good agreement with the those of local hydrodynamic simulations of the wiggle instability.

  • PDF

The Study of FACTS Impacts for Probabilistic Transient Stability

  • Kim Hyung-Chul;Kwon Sae-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.129-136
    • /
    • 2006
  • This paper proposes a probabilistic evaluation for the transient stability of electrical power systems incorporating FACTS devices. The uncertainties of the fault location and relay operation time play important keys in power system instability evaluation. The TCSC and SVC are employed for the reduction of system instability probability. This method is demonstrated by the WSCC test system and the results are compared with and without FACTS by means of Monte Carlo simulation.

A Study on the Analysis and Control of Voltage Stability (전압안정성 분석 및 제어에 관한 연구)

  • 장수형;김규호;유석구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.869-876
    • /
    • 1994
  • This paper presents an efficient method to calculate voltage collapse point and to avoid voltage instability. To evaluate voltage stability in power systems, it is necessary to get critical loading points. For this purpose, this paper uses linear programming to calculate efficiently voltage collapse point. Also, if index value becomes larger than given threshold value, voltage stability is improved by compensation of reactive power at selected bus. This algorithm is verified by simulation on the IEEE 14-bus sample system.

  • PDF