• Title/Summary/Keyword: ssim

Search Result 167, Processing Time 0.025 seconds

Nonlinear model for estimating depth map of haze removal (안개제거의 깊이 맵 추정을 위한 비선형 모델)

  • Lee, Seungmin;Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.492-496
    • /
    • 2020
  • The visibility deteriorates in hazy weather and it is difficult to accurately recognize information captured by the camera. Research is being actively conducted to remove haze so that camera-based applications such as object localization/detection and lane recognition can operate normally even in hazy weather. In this paper, we propose a nonlinear model for depth map estimation through an extensive analysis that the difference between brightness and saturation in hazy image increases non-linearly with the depth of the image. The quantitative evaluation(MSE, SSIM, TMQI) shows that the proposed haze removal method based on the nonlinear model is superior to other state-of-the-art methods.

A Study on the Color Functions of the Textile Design System based on CAD using Image Analysis Methods (텍스타일 디자인 캐드 시스템의 색정리 기능에 대한 정량적 분석 연구)

  • Choi, Kyung-Me;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.4
    • /
    • pp.43-54
    • /
    • 2011
  • Printing process has been a major sector in the textile industries for a long period of time. With the advent of digital textile printing, the complex procedures of printing preparations and after-treatment processes have been streamlined. For the design of the motives of images to be printed, the use of image handling software, e.g. Photoshop(Adobe), has been of prime importance. Even though the software is extremely useful and functionally versatile, there are many laborious steps involved for the specific textile printing process. The use of a CAD-based textile printing function may help the textile printing process in streamlining the complex processing stages. The image qualities of the output designs have been compared objectively with the aid of several image similarity evaluation schemes including the SSIM, and FSIM Index methods.

Super-resolution method for Infra-red Images (적외선 영상을 위한 초고해상도 기법)

  • Kim, Young-doo;Choi, Hyun-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.540-541
    • /
    • 2018
  • In this paper, we propose an super-resolution method that improves resolution by using DWT (Discrete Wavelet Transform) for low resolution infra-red images. In this method, DWT is performed in a manner that does not reduce the resolution of an image input through an infra-red camera to generate sub-bands of the same resolution (LH, HL, and HH) And the original infra-red image is used to perform an inverse-DWT to obtain an infra-red image with improved resolution. Experimental results show that the mean SSIM value of the proposed method is 0.989861, which is about 0.004 higher than that of the conventional Bi-linear and Bi-cubic filters.

  • PDF

Generation of contrast enhanced computed tomography image using deep learning network

  • Woo, Sang-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.

Generating a Retinex-based Reflectance Image from a Low-Light Image Using Deep Neural Network (심층 신경망을 이용한 저조도 영상에서 Retinex 기반 반사 영상 생성)

  • Kim, Wonhoi;Hwang, In-Chul;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Improvement of low-light image mainly focuses on the contrast enhancement. Many researches have been carried out for brightness enhancement, contrast improvement and illumination reduction. Recently, the aforementioned approaches have been replaced by artificial neural networks. This paper proposes a methodology that can replace the Retinex-based reflectance image acquisition by deep neural network. Experiments carried out on 102 low-light images validated the feasibility of the replacement by producing PSNR=30.8682(db) and SSIM=0.4345.

Side scan sonar image super-resolution using an improved initialization structure (향상된 초기화 구조를 이용한 측면주사소나 영상 초해상도 영상복원)

  • Lee, Junyeop;Ku, Bon-hwa;Kim, Wan-Jin;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.121-129
    • /
    • 2021
  • This paper deals with a super-resolution that improves the resolution of side scan sonar images using learning-based compressive sensing. Learning-based compressive sensing combined with deep learning and compressive sensing takes a structure of a feed-forward network and parameters are set automatically through learning. In particular, we propose a method that can effectively extract additional information required in the super-resolution process through various initialization methods. Representative experimental results show that the proposed method provides improved performance in terms of Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) than conventional methods.

Quality Analysis on Computer Generated Hologram Depending on the Precision on Diffraction Computation (회절연산 정밀도에 따른 CGH 기반 홀로그램 생성 품질 분석)

  • Jaehong Lee;Duksu Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.21-30
    • /
    • 2023
  • Computer-generated holography requires much more computation costs and memory space rather than image processing. We implemented the diffraction calculation with low-precision and mixed-precision floating point numbers and compared the processing time and quality of the hologram with various precision. We compared diffraction quality with double, single and bfloat16 precision. bfloat16 shows 5.94x and 1.52x times faster performance than double precision and single precision. Also, bfloat16 shows lower PSNR and SSIM and higher MSE than other precision. However, there is no significant effect on reconstructed images. These results show low precision, like bfloat16, can be utilized for computer-generated holography.

Newly-designed adaptive non-blind deconvolution with structural similarity index in single-photon emission computed tomography

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4591-4596
    • /
    • 2023
  • Single-photon emission computed tomography SPECT image reconstruction methods have a significant influence on image quality, with filtered back projection (FBP) and ordered subset expectation maximization (OSEM) being the most commonly used methods. In this study, we proposed newly-designed adaptive non-blind deconvolution with a structural similarity (SSIM) index that can take advantage of the FBP and OSEM image reconstruction methods. After acquiring brain SPECT images, the proposed image was obtained using an algorithm that applied the SSIM metric, defined by predicting the distribution and amount of blurring. As a result of the contrast to noise ratio (CNR) and coefficient of variation evaluation (COV), the resulting image of the proposed algorithm showed a similar trend in spatial resolution to that of FBP, while obtaining values similar to those of OSEM. In addition, we confirmed that the CNR and COV values of the proposed algorithm improved by approximately 1.69 and 1.59 times, respectively, compared with those of the algorithm involving an inappropriate deblurring process. To summarize, we proposed a new type of algorithm that combines the advantages of SPECT image reconstruction techniques and is expected to be applicable in various fields.

Feasibility Study of CNN-based Super-Resolution Algorithm Applied to Low-Resolution CT Images

  • Doo Bin KIM;Mi Jo LEE;Joo Wan HONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, various techniques are being applied through the development of medical AI, and research has been conducted on the application of super-resolution AI models. In this study, evaluate the results of the application of the super-resolution AI model to brain CT as the basic data for future research. Acquiring CT images of the brain, algorithm for brain and bone windowing setting, and the resolution was downscaled to 5 types resolution image based on the original resolution image, and then upscaled to resolution to create an LR image and used for network input with the original imaging. The SRCNN model was applied to each of these images and analyzed using PSNR, SSIM, Loss. As a result of quantitative index analysis, the results were the best at 256×256, the brain and bone window setting PSNR were the same at 33.72, 35.2, and SSIM at 0.98 respectively, and the loss was 0.0004 and 0.0003, respectively, showing relatively excellent performance in the bone window setting CT image. The possibility of future studies aimed image quality and exposure dose is confirmed, and additional studies that need to be verified are also presented, which can be used as basic data for the above studies.

A study on image region analysis and image enhancement using detail descriptor (디테일 디스크립터를 이용한 이미지 영역 분석과 개선에 관한 연구)

  • Lim, Jae Sung;Jeong, Young-Tak;Lee, Ji-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.728-735
    • /
    • 2017
  • With the proliferation of digital devices, the devices have generated considerable additive white Gaussian noise while acquiring digital images. The most well-known denoising methods focused on eliminating the noise, so detailed components that include image information were removed proportionally while eliminating the image noise. The proposed algorithm provides a method that preserves the details and effectively removes the noise. In this proposed method, the goal is to separate meaningful detail information in image noise environment using the edge strength and edge connectivity. Consequently, even as the noise level increases, it shows denoising results better than the other benchmark methods because proposed method extracts the connected detail component information. In addition, the proposed method effectively eliminated the noise for various noise levels; compared to the benchmark algorithms, the proposed algorithm shows a highly structural similarity index(SSIM) value and peak signal-to-noise ratio(PSNR) value, respectively. As shown the result of high SSIMs, it was confirmed that the SSIMs of the denoising results includes a human visual system(HVS).