• Title/Summary/Keyword: square unit cell

Search Result 50, Processing Time 0.029 seconds

NOVEL GEOMETRIC PARAMETERIZATION SCHEME FOR THE CERTIFIED REDUCED BASIS ANALYSIS OF A SQUARE UNIT CELL

  • LE, SON HAI;KANG, SHINSEONG;PHAM, TRIET MINH;LEE, KYUNGHOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.196-220
    • /
    • 2021
  • This study formulates a new geometric parameterization scheme to effectively address numerical analysis subject to the variation of the fiber radius of a square unit cell. In particular, the proposed mesh-morphing approach may lead to a parameterized weak form whose bilinear and linear forms are affine in the geometric parameter of interest, i.e. the fiber radius. As a result, we may certify the reduced basis analysis of a square unit cell model for any parameters in a predetermined parameter domain with a rigorous a posteriori error bound. To demonstrate the utility of the proposed geometric parameterization, we consider a two-dimensional, steady-state heat conduction analysis dependent on two parameters: a fiber radius and a thermal conductivity. For rapid yet rigorous a posteriori error evaluation, we estimate a lower bound of a coercivity constant via the min-θ method as well as the successive constraint method. Compared to the corresponding finite element analysis, the constructed reduced basis analysis may yield nearly the same solution at a computational speed about 29 times faster on average. In conclusion, the proposed geometric parameterization scheme is conducive for accurate yet efficient reduced basis analysis.

Prediction of Mechanical Property of Biomorphic Composites (Biomorphic C/SiC 복합재료의 기계적 물성 연구)

  • Jeong, Jae-Yeon;Woo, Kyeong-Sik;Lee, Dong-Ju;Hong, Soon-Hyung;Kim, Yun-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.670-677
    • /
    • 2012
  • In this paper, mechanical property of biomorphic C/SiC composite was calculated by unit cell analysis. The microstructural arrangements of carbonized pine and radiata pine which were impregnated with silicon, were idealized as square and hexagonal arrays. Unit cell was then defined and equivalent elastic constants were calculated. A single and double unit cell structures were considered. The effect of void distribution was also studied by monte carlo simulation.

Evaluation of In-Plane Effective Properties of Circular-Hole Perforated Sheet (원형 다공 평판의 면내 유효 물성치 계산)

  • 정일섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.181-188
    • /
    • 2004
  • Structural analysis for materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. For the homogenization process, a unit cell is defined and loaded somehow, and its response is investigated to evaluate the properties. The imposed loading conditions should accord to the behavior of unit cell immersed in the macroscopic structure in order to guarantee the accuracy of the effective properties. Each unit cell shows periodic variation of strain if the material is loaded uniformly, and in this study, direct implementation of this characteristic behavior is attempted on FE models of unit cell. Conventional finite element analysis tool can be used without any modification, and the boundary of unit cell is constrained in a way that the periodicity is satisfied. The proposed method is applicable to skew arrayed in-homogeneity problems. The flexibility matrix relating tonsorial stress and strain components in skewed rectilinear coordinate system is transformed so that the required engineering constants can be evaluated. Effective properties are computed for the materials with square and skew arrayed circular holes, and its accuracy is examined.

Teratoma Formation in Immunocompetent Mice After Syngeneic and Allogeneic Implantation of Germline Capable Mouse Embryonic Stem Cells

  • Aldahmash, Abdullah;Atteya, Muhammad;Elsafadi, Mona;Al-Nbaheen, May;Al-Mubarak, Husain Adel;Vishnubalaji, Radhakrishnan;Al-Roalle, Ali;Al-Harbi, Suzan;Manikandan, Muthurangan;Matthaei, Klaus Ingo;Mahmood, Amer
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5705-5711
    • /
    • 2013
  • Background: Embryonic stem cells (ESCs) have the potential to form teratomas when implanted into immunodeficient mice, but data in immunocompetent mice are limited. We therefore investigated teratoma formation after implantation of three different mouse ESC (mESC) lines into immunocompetent mice. Materials and Methods: BALB/c mice were injected with three highly germline competent mESCs (129Sv, BALB/c and C57BL/6) subcutaneously or under the kidney capsule. After 4 weeks, mice were euthanized and examined histologically for teratoma development. The incidence, size and composition of teratomas were compared using Pearson Chi-square, t-test for dependent variables, one-way analysis of variance and the nonparametric Kruskal-Wallis analysis of variance and median test. Results: Teratomas developed from all three cell lines. The incidence of formation was significantly higher under the kidney capsule compared to subcutaneous site and occurred in both allogeneic and syngeneic mice. Overall, the size of teratoma was largest with the 129Sv cell line and under the kidney capsule. Diverse embryonic stem cell-derived tissues, belonging to the three embryonic germ layers, were encountered, reflecting the pluripotency of embryonic stem cells. Most commonly represented tissues were nervous tissue, keratinizing stratified squamous epithelium (ectoderm), smooth muscle, striated muscle, cartilage, bone (mesoderm), and glandular tissue in the form of gut- and respiratory-like epithelia (endoderm). Conclusions: ESCs can form teratomas in immunocompetent mice and, therefore, removal of undifferentiated ESC is a pre-requisite for a safe use of ESC in cell-based therapies. In addition the genetic relationship of the origin of the cell lines to the ability to transplant plays a major role.

Analytical Approach to Compression and Shear Characteristics of the Unit Cell of PCM Core with Pyramidal Configuration (피라미드 형상의 PCM 코어 단위 셀의 압축 및 전단특성에 관한 해석적 연구)

  • Kim, S.W.;Jung, H.C.;Lee, Y.S.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.411-415
    • /
    • 2010
  • A sandwich panel which is comprised of truss cores faced with solid face sheets is lightweight and multi-functional. So it is widely used to not only structural material but also heat transfer media in transportation field such as airplane, train and vessel. There are various core topologies such as pyramidal and tetrahedral truss, square honeycombs and kagome truss. The study focused on analytical approach to optimize compression and shear quality of the unit cell of PCM with pyramidal configuration. With various unit cell models which have the same core weight per unit area but different truss member angle, analytical solution for effective stress ($\bar{\sigma},\bar{\tau}$), peak stress ($\bar{\sigma}_{peak},\bar{\tau}_{peak}$) by yielding and buckling, relative density ($\bar{\rho}_c$) and effective stiffness ($\bar{E},\bar{G}$) have been computed and compared each other. With this approach, the most optimal core configuration was predicted. The result has become the efficient guidelines for the design of PCM core structure.

Design and homogenization of metal sandwich tubes with prismatic cores

  • Zhang, Kai;Deng, Zichen;Ouyang, Huajiang;Zhou, Jiaxi
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.439-454
    • /
    • 2013
  • Hollow cylindrical tubes with a prismatic sandwich lining designed to replace the solid cross-sections are studied in this paper. The sections are divided by a number of revolving periodic unit cells and three topologies of unit cells (Square, Triangle and Kagome) are proposed. Some types of multiple-topology designed materials are also studied. The feasibility and accuracy of a homogenization method for obtaining the equivalent parameters are investigated. As the curved elements of a unit cell are represented by straight elements in the method and the ratios of the lengths of the curved elements to the lengths of the straight elements vary with the changing number of unit cells, some errors may be introduced. The frequencies of the first five modes and responses of the complete and equivalent models under an internal static pressure and an internal step pressure are compared for investigating the scope of applications of the method. The lower bounds and upper bounds of the number of Square, Triangular and Kagome cells in the sections are obtained. It is shown that treating the multiple-topology designed materials as a separate-layer structure is more accurate than treating the structure as a whole.

Reflectarray Antenna Capable of 1-Bit Switchable W-Band Beamforming Network

  • Asamani, Bismark;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.408-411
    • /
    • 2021
  • This paper presents a new reflectarray antenna capable with 1-bit switchable capability for W-band beamforming network. The proposed antenna has been optimized using two unit-cells with sizes of 1.0 mm and 1.3 mm to form a total number of 193 radiating elements on a square aperture surface of length 30 mm. These radiating elements are spaced 0.5 wavelengths apart and fed by a 15 dBi pyramidal horn antenna as the feed antenna placed 53 mm away from the aperture center. The proposed reflectarray achieves a realized peak gain of 22.52 dBi, a half-power beamwidth of 5.1° in both E- and H-planes at the test frequency of 80 GHz and operates over a wide bandwidth from 74 GHz to 90 GHz.

A Compact Microstrip Patch Antenna Based on Metamaterials for Wi-Fi and WiMAX Applications

  • Nelaturi, Suman;Sarma, Nookala Venkata Satya Narasimha
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • A low profile asymmetrical fractal boundary patch antenna based on reactive impedance surface (RIS) and a mushroom unit cell (MUC) is proposed and studied for dual band operation. The sides of the square patch antenna are replaced with asymmetrical half circled fractal curves for circular polarization operation at patch mode band. The fractal patch antenna is loaded with MUC for dual band operation. The antenna radiation characteristics are investigated and illustrated with both simulated and experimental results in detail. The 10-dB return loss bandwidth are 8.48% (3.21-3.49 GHz) and 2.59% (2.30-2.36 GHz) at upper and lower resonance frequencies, respectively. The 3-dB axial ratio bandwidth is 4.26% (3.21-3.35 GHz). A close agreement between simulation data with experimental results is observed.

Evaluation of Effective Orthotropic Creep Parameters for Perforated Sheets (다공질 박판의 유효 직교 이방성 크리프 파라미터 계산)

  • Chung Ilsup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.79-88
    • /
    • 2005
  • Evaluating the effective properties of materials containing various types of in-homogeneities is an important issue in the analysis of structures composed of those materials. A simple and effective method for the purpose is to impose the periodic displacement boundary conditions on the finite element model of a unit cell. Their theoretical background is explained based on the purely kinematical relations in the regularly spaced in-homogeneity problems, and the strategies to implement them into the analysis and to evaluate the homogenized material constants are introduced. The creep behavior of a thin sheet with square arrayed rectangular voids is characterized, where the orthotropy is induced by the presence of the voids. The homogenization method is validated through the comparison of the analysis of detailed model with that of the simplified one with the effective parameters.

Design of Metamaterial-Inspired Wideband Absorber at X-Band Adopting Trumpet Structures

  • Kim, Beom-Kyu;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.314-316
    • /
    • 2014
  • This letter presents two types of metamaterial-inspired absorbers adopting resistive trumpet structures at the X band. The unit cell of the first type is composed of a trumpet-shaped resonator loading a chip resistor, a metallic back plane, and a FR4 (${\varepsilon}_r=4.4-j0.02$) substrate between them (single-layer). The absorption rate is 99.5% at 13.3 GHz. The full width at half maximum (FWHM) is 95 % at 11.2 GHz (from 5.9 to 16.5 GHz). The size of unit cell is $5.6{\times}5.6{\times}2.4mm^3$. The second type has been optimized with a $7{\Omega}$/square uniform resistive coating, removing the chip resistors but leading to results comparable to the first type. The proposed absorbers are almost insensitive to polarizations of incident waves due to symmetric geometry.