• Title/Summary/Keyword: square root model

Search Result 1,033, Processing Time 0.023 seconds

Estimation of the Spring and Summer Net Community Production in the Ulleung Basin using Machine Learning Methods (기계학습법을 이용한 동해 울릉분지의 봄과 여름 순군집생산 추정)

  • DOSHIK HAHM;INHEE LEE;MINKI CHOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • The southwestern part of the East Sea is known to have a high primary productivity compared to those in the northern and eastern parts, which is attributed to nutrients supplies either by Tsushima Warm Current or by coastal upwelling. However, research on the biological pump in this area is limited. We developed machine learning models to estimate net community production (NCP), a measure of biological pump, with high spatial and time scales of 4 km and 8 days, respectively. The models were fed with the input parameters of sea surface temperature, chlorophyll-a, mixed layer depths, and photosynthetically active radiation and trained with observed NCP derived from high resolution measurements of surface O2/Ar. The root mean square error between the predicted values by the best performing machine model and the observed NCP was 6 mmol O2 m-2 d-1, corresponding to 15% of the average of observed NCP. The NCP in the central part of the Ulleung Basin was highest in March at 49 mmol O2 m-2 d-1 and lowest in June and July at 18 mmol O2 m-2 d-1. These seasonal variations were similar to the vertical nitrate flux based on the 3He gas exchange rate and to the particulate organic carbon flux estimated by the 234Th disequilibrium method. To expand this method, which produces NCP estimate for spring and summer, to autumn and winter, it is necessary to devise a way to correct bias in NCP by the entrainment of subsurface waters during the seasons.

A Study on the Quality of Healthcare Services for Four Critical Illnesses and the Maintenance of Right to Protection and Dignity in a Senior General Hospital (상급종합병원의 4대 중증질환 의료 서비스 품질과 보호받을 권리 및 존엄성 유지에 관한 연구)

  • Woojin Lee;Minsuk Shin
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.531-550
    • /
    • 2023
  • Purpose: The unique nature of life-and-death healthcare services sets them apart from other service industries. While many studies exist on the relationship between healthcare services and customer satisfaction, most of them focus on mildly ill patients, ignoring the differences between critically ill and non-seriously ill patients. This study discusses the actual quality of healthcare services for patients who are facing life-threatening illnesses and are on life support, as well as their right to protection and dignity. Methods: The survey conducted to 149 patients with the four major illnesses: cancer, heart disease, brain disease and rare and incurable disease, those who have experiences with senior general hospitals. Results: The basic statistics of this study are adequate to represent the four major critical illnesses, and the reliability and validity of this study's hypotheses, which were measured by multiple items, were analyzed, and the internal consistency was judged to be high. In addition, it was found that the convergent validity was good and the discriminant validity was also secured. When examining the goodness of fit of the hypotheses, the SRMR, which is the standardized root mean square of residuals that measures the difference between the covariance matrix of the data variables and the theoretical covariance matrix structure of the model, met the optimal criteria. Conclusion: The academic implications of this study are differentiated from other studies by moving away from evaluating the quality of healthcare services for mildly ill patients and focusing on the rights and dignity of patients with life-threatening illnesses in four senior general hospitals. In terms of academic implications, this study enriches the depth of related studies by demonstrating the right to protection and dignity as a factor of patient-centeredness based on physical environment quality, interaction quality, and outcome quality, which are presented as sub-factors of healthcare quality. We found that the three quality factors classified by Brady and Cronin (2001) are optimized for healthcare quality assessment and management, and that the results of patients' interaction quality assessment can be used to provide a comprehensive quality rating for hospitals. Health and human rights are inextricably linked, so assessing the degree to which rights and dignity are protected can be a superior and more comprehensive measurement tool than traditional health level measures for healthcare organizations. Practical implications: Improving the quality of the physical environment and the quality of outcomes is an important challenge for hospital managers who attract patients with life and death conditions, but given the scale and economics of time, money, and human inputs, improving the quality of interactions and defining them as performance indicators in hospital quality management is an efficient way to create maximum value in the short term.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

Estimation of Chlorophyll-a Concentrations in the Nakdong River Using High-Resolution Satellite Image (고해상도 위성영상을 이용한 낙동강 유역의 클로로필-a 농도 추정)

  • Choe, Eun-Young;Lee, Jae-Woon;Lee, Jae-Kwan
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.613-623
    • /
    • 2011
  • This study assessed the feasibility to apply Two-band and Three-band reflectance models for chlorophyll-a estimation in turbid productive waters whose scale is smaller and narrower than ocean using a high spatial resolution image. Those band ratio models were successfully applied to analyzing chlorophyll-a concentrations of ocean or coastal water using Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS), etc. Two-band and Three-band models based on band ratio such as Red and NIR band were generally used for the Chl-a in turbid waters. Two-band modes using Red and NIR bands of RapidEye image showed no significant results with $R^2$ 0.38. To enhance a band ratio between absorption and reflection peak, We used red-edge band(710 nm) of RapidEye image for Twoband and Three-band models. Red-RE Two-band and Red-RE-NIR Three-band reflectance model (with cubic equation) for the RapidEye image provided significance performances with $R^2$ 0.66 and 0.73, respectively. Their performance showed the 'Approximate Prediction' with RPD, 1.39 and 1.29 and RMSE, 24.8, 22.4, respectively. Another three-band model with quadratic equation showed similar performances to Red-RE two-band model. The findings in this study demonstrated that Two-band and Three-band reflectance models using a red-edge band can approximately estimate chlorophyll-a concentrations in a turbid river water using high-resolution satellite image. In the distribution map of estimated Chl-a concentrations, three-band model with cubic equation showed lower values than twoband model. In the further works, quantification and correction of spectral interferences caused by suspended sediments and colored dissolved organic matters will improve the accuracy of chlorophyll-a estimation in turbid waters.

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

Climate Change Impact on Nonpoint Source Pollution in a Rural Small Watershed (기후변화에 따른 농촌 소유역에서의 비점오염 영향 분석)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.209-221
    • /
    • 2006
  • The purpose of this study is to analyze the effects of climate change on the nonpoint source pollution in a small watershed using a mid-range model. The study area is a basin in a rural area that covers 384 ha with a composition of 50% forest and 19% paddy. The hydrologic and water quality data were monitored from 1996 to 2004, and the feasibility of the GWLF (Generalized Watershed Loading function) model was examined in the agricultural small watershed using the data obtained from the study area. As one of the studies on climate change, KEI (Korea Environment Institute) has presented the monthly variation ratio of rainfall in Korea based on the climate change scenario for rainfall and temperature. These values and observed daily rainfall data of forty-one years from 1964 to 2004 in Suwon were used to generate daily weather data using the stochastic weather generator model (WGEN). Stream runoff was calibrated by the data of $1996{\sim}1999$ and was verified in $2002{\sim}2004$. The results were determination coeff, ($R^2$) of $0.70{\sim}0.91$ and root mean square error (RMSE) of $2.11{\sim}5.71$. Water quality simulation for SS, TN and TP showed $R^2$ values of 0.58, 0.47 and 0.62, respectively, The results for the impact of climate change on nonpoint source pollution show that if the factors of watershed are maintained as in the present circumstances, pollutant TN loads and TP would be expected to increase remarkably for the rainy season in the next fifty years.

Predictive Modeling of Bacillus cereus on Carrot Treated with Slightly Acidic Electrolyzed Water and Ultrasonication at Various Storage Temperatures (미산성 차아염소산수와 초음파를 처리한 당근에서 저장 중 Bacillus cereus 균의 생육 예측모델)

  • Kim, Seon-Young;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1296-1303
    • /
    • 2014
  • This study was conducted to develop predictive models for the growth of Bacillus cereus on carrot treated with slightly acidic electrolyzed water (SAcEW) and ultrasonication (US) at different storage temperatures. In addition, the inactivation of B. cereus by US with SAcEW was investigated. US treatment with a frequency of 40 kHz and an acoustic energy density of 400 W/L at $40^{\circ}C$ for 3 min showed the maximum reduction of 2.87 log CFU/g B. cereus on carrot, while combined treatment of US (400 W/L, $40^{\circ}C$, 3 min) with SAcEW reached to 3.1 log CFU/g reduction. Growth data of B. cereus on carrot treated with SAcEW and US at different temperatures (4, 10, 15, 20, 25, 30, and $35^{\circ}C$) were collected and used to develop predictive models. The modified Gompertz model was found to be more suitable to describe the growth data. The specific growth rate (SGR) and lag time (LT) obtained from the modified Gompertz model were employed to establish the secondary models. The newly developed secondary models were validated using the root mean square error, bias factor, and accuracy factor. All results of these factors were in the acceptable range of values. After compared SGR and LT of B. cereus on carrot, the results showed that the growth of B. cereus on carrot treated with SAcEW and US was slower than that of single treatment. This result indicates that shelf life of carrot treated with SAcEW and US could be extended. The developed predictive models might also be used to assess the microbiological risk of B. cereus infection in carrot treated with SAcEW and US.

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.