• Title/Summary/Keyword: spring-mass system

검색결과 439건 처리시간 0.026초

Portable Calibration System for Displacement Measuring Sensors

  • Eom, Tae-Bong;Lee, Jae-Yun;Kim, Jae-Wan;Joon, Lyou
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.56-59
    • /
    • 2006
  • A vibrational model of powder transfer equipment based on the lumped parameter method was developed, in which the operating motion consists of surging, bouncing, and pitching. After decoupling the equation of motion, the vibrational excitation source of the pitching motion was removed. So the designers are able to plan the optimum design to adjust the motion trajectory of the powder transfer equipment. That is, a procedure to adjust the motion trajectory of powder transfer equipment by changing design specifications such as the installation position, the direction of the motor, the driving speed, the mass unbalance, the stiffness coefficient, and the installation position of the support spring, is presented in this paper. The powder transfer equipment manufactured according to the results of this study did not suffer fatigue destruction, since the maximum stress on the basket structure was sufficiently small.

유정압안내면의 동적 Modeling에 관한 연구 (A Study on the Dynamics Modeling of Hydrostatic tables)

  • 노승국;이찬흥;박천홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.643-647
    • /
    • 1996
  • The dynamic behavior of hydrostatic table is represented as the theoretical model, 1-dof, 2-dof rigid body spring-damper system, and finite element model. By the experimental and theoretical methods, the validity of these models and some other dynamic behaviors, such as the effects of unbalanced load and three dimensional motion, are investigated. To make easier to consider the dynamic behavior of hydrostatic table in design process, the stiffness and damping coefficients are calculated using the simple approximation method delived from the mass flow continuity condition, and compared with experimental results.

  • PDF

외란 추정기를 갖는 슬라이딩 모드 제어기의 특성 (Characteristics of a Sliding Mode Controller with Disturbance Estimator)

  • 최승복;함준호;박종성
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.165-171
    • /
    • 2002
  • The conventional sliding mode control(SMC) technique requires a priori knowledge of the upperbounds of disturbances or/and modeling uncertainties to assure robustness. This, however, may not to be easy to obtain in practical situation. This paper presents a new methodology, sliding mode control with disturbance estimator(SMCDE), which offers a robust control performance without a priori knowledge about the disturbance. The proposed technique is featured by an average value of the imposed disturbance over a certain period. A nonlinear spring-mass-damper system is adopted as an illustrative example, and a comparative work between the conventional technique and the present one is undertaken.

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • 박철우;주현식
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF

밸브 구동용 개폐식 솔레노이드 액추에이터의 설계 (A Design of On/Off Type Solenoid Actuator for Valve Operation)

  • 성백주
    • 유공압시스템학회논문집
    • /
    • 제6권4호
    • /
    • pp.24-32
    • /
    • 2009
  • For a design of on/off solenoid actuator for valve actuating, designer must have the experimental knowledge as well as general electromagnetic formulas to design object. It is possible for theoretical knowledge to do the out-line design, but it is impossible to optimal design without experimental knowledge which only can be achieved through many repeated experiments. In addition, in present on/off type solenoid actuator field, the smaller, lightening, lower consumption power, high response time are effected as the most important design factor. So, experimental knowledge is more needed for optimal design of solenoid actuator. In this study, we derived the governing equations for optimal design of on/off solenoid actuator for valve actuating and developed a design program composed electromagnetic theories and experimental parameter values for inexperienced designers. And we proved the propriety of this program by experiments.

  • PDF

Design of compact phase controller for pulse tube refrigerator

  • Ki, Tae-Kyung;Jeong, Sang-Kwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권2호
    • /
    • pp.25-28
    • /
    • 2011
  • A compact phase controller of pulse tube refrigerator is proposed in this paper. Most pulse tube refrigerators available now consist of a long inertance tube and reservoir as the phase controller. The long inertance tube and reservoir present a challenge for compact packaging in some applications. To overcome this disadvantage, the long inertance tube and reservoir are replaced with the compact phase controller consisted of mass, spring and damper in pulse tube refrigerator. This process is achieved using similarity of mechanical, electrical, and acoustic system and the specific configuration of the compact phase controller is designed. From the simulation code in this paper, the performance of pulse tube refrigerator with the designed compact phase controller is confirmed to be comparable to pulse tube refrigerator with the long inertance tube and reservoir.

에어 서스펜션 시트의 구조 및 진동해석에 관한 연구 (A Study on Structure and Vibration Analysis of an Air Suspension Seat)

  • 하정수;이건명
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.47-54
    • /
    • 2017
  • This study analyzed air suspension seat frame structure and vibration for 50 - 180 kg mass driver to obtain optimum seat design parameter values for the equivalent spring constant and damping coefficient. Various air suspension seat frames were designed following WTS-003 and KS B 6839 standards, and then evaluated using finite elements analysis. Resonance and vibration tests were performed according to the 78/764/EEC standard.

회전축계의 진동해석을 위한 지지구조물의 등가모델에 관한 연구 (A Study on the Equivalent Model of the Support Structure for Rotordynamic Analysis)

  • 최복록;박진무
    • 소음진동
    • /
    • 제10권1호
    • /
    • pp.153-159
    • /
    • 2000
  • This paper presents a new method for including the dynamic stiffness of the stationary parts in rotordynamic analysis. As a consequence of the support dynamics, critical speeds are varied and/or additional critical speeds are introduced. Therefore, dynamic effects of the support are often significant in high speed turbomachinery, but most of analysis has considered the support as a rigid body or a simple structure. The proposed method is based on the coupled characteristics of the driving point and transfer frequency response functions of the support system to model the equivalent spring-mass series in finite element analysis. To demonstrate the applicability of the simulation procedures provided, it is applied to the rotor model of the double suction centrifugal pump. Results of the suggested equivalent-support rotor model including coupled effects agree well with the entire pump model.

  • PDF

열차-교량 진동전달특성을 이용한 철도교량의 진동사용성 평가기법 (Vibration Serviceability Evaluation of Railway Bridges Considering Bridge-train Transfer function)

  • 전법규;김남식;김성일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.359-366
    • /
    • 2009
  • This paper aims for analyzing the vibration serviceability of train by simply expressing its vertical vibration when it passes a railway bridge. For this purpose, bridge-train transfer function was derived and bridge-train interaction analysis was performed by using the derived function. The bridge-train transfer function was developed with the assumption that train is a single mass-spring system, and bridge-train interaction analysis was performed on simple beams of KTX passenger car. The vertical acceleration signals of passenger cars obtained from bridge-train interaction analysis were compared with them of cars obtained from the bridge-train transfer function. As a result, it could be estimated to express the vertical vibration inside the passenger car required for vibration serviceability evaluation by using the vertical vibration of bridges obtained from moving load analysis. Therefore, it may be possible to evaluate the vibration serviceability of railway bridges considering bridge-train interaction effect.

  • PDF

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.