• 제목/요약/키워드: spring-back

검색결과 295건 처리시간 0.024초

헬리컬 기어의 정밀 냉간 단조에 대한 연구 (Study on Precision Cold Forging of helical Gear)

  • 박용복;양동열
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.384-392
    • /
    • 1999
  • In metal forming, there are problems with recurrent geometric characteristics without explicitly prescibed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. In this paper, as a practical application of the proposed method, the precision cold forging of a helical gear has been simulated by a three-dimensional rigid-plastic finite element method and compared with the experiment. The application of recurrent boundary conditions to helical gear forging analysis is proved to be effective and valid. the elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products, the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed, and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF

후크 벤딩 금형 설계의 전산화에 관한 연구 (Study on the Computerization of Die Design for Bending Hook)

  • 조은정;정호승;정철우;조종래;최일동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.450-456
    • /
    • 2002
  • Die desig for manufacturing hooks from steel wires has been depended on empirical procedures based on trial and error method. To design die, at first the curvature and bending angle of hook are computed by using AutoCAD and developed program which is composed of Visual Basic. Then spring back should be considered because the elastic recovery of material is very important in bending process. In this study, bending analysis of elastic-plastic materials is applied to predict curvature of hook and spring back. Therefore, systematic procedure of die design for bending hook is achieved to consider elastic recovery in terms of hook shapes. Experimental results are good agreement with calculated results.

마하라노비스 다구찌(Mahalanobis Taguchi) 시스템을 이용한 박판 성형 공정의 최적화 (Optimization of Sheet Metal Forming Process Using Mahalanobis Taguchi System)

  • 김경모
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.95-102
    • /
    • 2016
  • Wrinkle, spring-back, and fracture are major defects frequently found in the sheet metal forming process, and the reduction of such defects is difficult as they are affected by uncontrollable factors, such as variations in properties of the incoming material and process parameters. Without any countermeasures against these issues, attempts to reduce defects through optimal design methods often lead to failure. In this research, a new multi-attribute robust design methodology, based on the Mahalanobis Taguchi System (MTS), is presented for reducing the possibilities of wrinkle, spring-back, and fracture. MTS performs experimentation, based on the orthogonal array under various noise conditions, uses the SN ratio of the Mahalanobis distance as a performance metric. The proposed method is illustrated through a robust design of the sheet metal forming process of a cross member of automotive body.

980MPa급 초고장력 강판을 이용한 자동차용 시트 레일 로어 부품의 성형공정 설계 (Process Design of Automobile Seat Rail Lower Parts using Ultra-High Strength, DP980 Steel)

  • 박동환;탁윤학;권혁홍
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.160-167
    • /
    • 2018
  • The purpose of this study is to develop a process for forming a MPa ultra-high strength steel sheet to reduce weight and improve product strength. To do this, we performed the initial process design based on empirical formulas in a handbook and experience of skilled engineers, and researched the effects of major process variables on spring back by analyzing the forming analysis and experimental results. This paper suggests an optimal process design of the seat rail lower parts, using a MPa ultra-high strength steel sheet. This satisfies the dimensional accuracy and strength requirements for the product.

대변형 쉘 요소를 이용한 박 강판 형상교정 공정의 탄소성 유한요소 해석 (Analysis of Leveling Process of Sheet Steels by Elastic-Plastic Large Deformation Shell Elements)

  • 박기철;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.319-322
    • /
    • 2003
  • For the analysis of leveling process by the 3-dimensional elastic-plastic finite element method, a finite element analysis program modeling large deformation of shell has been developed. This program fur analyzing large deformation of sheet during leveling includes spring-back analysis as well as efficient contact treatment between sheet and rolls of leveler. This is verified by the simple leveling experiment with 5 rolls at laboratory. Besides the leveling examples, problems within the category of large strain and rotation, such as 3-dimensional roll-up and gutter occurrence at continuous bending-unbending process are also tested for verification of the program. The residual curvatures of strip predicted by finite element analysis are within 20% error range of the experiment. The formation and direction of anticlastic curvature or gutter during bending-unbending under tension is predicted and this agrees with the experimental results.

  • PDF

Steel processing effects on crash performance of vehicle safety related applications

  • Doruk, Emre
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.351-358
    • /
    • 2017
  • Due to the increasing competition, automotive manufacturers have to manufacture highly safe and light vehicles. The parts which make up the body of the vehicle and absorb the energy in case of a crash, are usually manufactured with sheet metal forming methods such as deep drawing, bending, trimming and spinning. The part may get thinner, thicker, folded, teared, wrinkled and spring back based on the manufacturing conditions during manufacturing and the type of application methods. Transferring these effects which originate from the forming process to the crash simulations that are performed for vehicle safety simulations, makes accurate and reliable results possible. As a part of this study, firstly, the one-step and incremental sheet metal forming analysis (deep drawing + trimming + spring back) of vehicle front bumper beam and crash boxes were conducted. Then, crash performances for cases with and without the effects of sheet metal forming were assessed in the crash analysis of vehicle front bumper beam and crash box. It was detected that the parts absorbed 12.89% more energy in total in cases where the effect of the forming process was included. It was revealed that forming history has a significant effect on the crash performance of the vehicle parts.

스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구 (The Spinnability of Multi-step Cylindrical Cup in Spinning Process)

  • 박중언;한창수;최석우;김승수;나경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

대 직경 이음매 없는 Ti-6Al-4V 튜브의 $360^{\circ}$ 냉간 굽힘 ($360^{\circ}$ Cold Bending of Ti-6Al-4V Large-Diameter Seamless Tube)

  • 허선무;박종승
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.176-182
    • /
    • 2000
  • $360^{\circ}$ bending of Ti-6Al-4V large-diameter seamless tube(62.37 mm $OD {\times} 4.40mm$ wall thickness) has been achieved at room temperature without heating. The bending process comprised two steps : the first step is $360^{\circ}$ bending by an uniquely designed rotary bender allowing spring back, which is subsequently eliminated by the second or finishing step which comprised repeated bending processes by powered three roll bender, In odor to prevent collapse of tube during bending, Cerro $Tru^{TM}$(Trade name of a non-ferrous low melting point alloy)has been employed as a filler metal. The resultant ovality(out of roundness) obtained was 1.28%, as compared with 6~8% without applying Cerro $Tru^{TM}$.

  • PDF

다이레스 포밍을 이용한 브레이크 더스트 쉴드 시작품 제작 (Prototype Manufacturing of a Brake Dust Shield by Dieless CNC Forming Technology)

  • 강재관
    • 한국기계가공학회지
    • /
    • 제6권4호
    • /
    • pp.36-43
    • /
    • 2007
  • Dieless CNC forming is an innovative technology which can form various materials with complex shape by numerically controlled incremental forming process. In order to apply the technology to industrial parts, however, many problems such as spring-back, rising of material, and trimming difficulty must be solved. In this paper a new dieless CNC forming method to improve forming quality is proposed, which consists of how to modify its original shape in CAD and how to generate its CNC tool path in CAM. The effectiveness of the proposed procedures is tested with a brake dust shield of a vehicle. The results shows that the method proposed enhances the forming quality up to 48% compared to traditional method.

  • PDF

유리섬유 강화 열가소성 복합재료의 굽힘성에 대한 연구 (A Study on the bending process of glass fiber reinforced thermoplastic composite)

  • 남궁천;김동석;이중희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.513-517
    • /
    • 1997
  • Glass fiber reinforced thermoplastic composite materials have considerable promise for increased use in low cost high volum applications because of the potential for processing by solid phase forming. However, the forming characteristics of these materials have not been well known. The primary focus of this research is the investigation of the bendability of these composites and spring-back phenomena in pure bending. The materials tested contained 10, 35, and 40 percent by weight of randomly oriented glass fiber in a polypropylene matrix. The bending tests were performed at temperatures ranging form 75 ".deg. c" to 150 ".deg. c" and at punch speeds of 2.54 mm/sec and 0.0254 mm/sec. The measured bendability and spring back angle in pure bending werw compared with the predictions based on the simple analyical models. Goog agreement between experimental and analytical results was observed.esults was observed.

  • PDF