• 제목/요약/키워드: spring stiffness

검색결과 671건 처리시간 0.03초

접촉 강성을 고려헌 차량-레일계의 연성 진동 해석 (A Couple Vibration Analysis of Railway Track System with Consideration of Contact Stiffness)

  • 류윤선;조희복;김사수
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.953-958
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

이론분석에 의한 MEMS 소켓 핀의 스프링 상수 계산 (Computation of Spring Constants of MEMS Socket Pins by Theoretical Analysis)

  • 배규식;호광일
    • 한국재료학회지
    • /
    • 제18권11호
    • /
    • pp.592-596
    • /
    • 2008
  • Spring constants (displacement per unit applied load) of MEMS socket pins of given structures were computed by theoretical analysis and confirmed by the finite element method (FEM). In the theoretical analysis, the displacement of pins was calculated based on the 2-dimensional bending theory of the curved beam. For the 3-dimensional modeling, CATIA was used. After modeling, the raw data were transferred to ANSYS, which was employed in the 3-dimensional analysis for the calculation of the stress and strain and loaddisplacement The theoretical analysis and the FEM results were found to agree, with each showing the spring constants as 63.4 N/m within a reasonable load range. These results show that spring constants can be easily obtained through theoretical calculation without resorting to experiments and FEM analysis for simple and symmetric structures. For the some change of shape and structural stiffness, this theoretical analysis can be applied to MEMS socket pins.

규정된 동특성을 만족하기 위한 회로차단기의 최적설계 (Optimal Design of a Circuit Breaker for Satisfying the Specified Dynamic Characteristics)

  • 안길영;조상순;오일성;김수현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.859-864
    • /
    • 2001
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. Because the opening and the closing dynamics of electric contacts is determined by such a linkage system, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the dynamic model of the circuit breaker using a multibody dynamic program ADAMS, a optimal design procedure of determining the spring design parameters is presented. The proposed procedure is applied to the design of an opening spring for satisfying the specified opening characteristics.

  • PDF

철도차량용 공기스프링 실차시험 및 신뢰성 평가 (Reliability Evaluation of Air Spring for Railway Vehicle)

  • 우창수;김완두;최경진
    • 한국철도학회논문집
    • /
    • 제8권2호
    • /
    • pp.182-187
    • /
    • 2005
  • Air spring system was widely accepted for railway vehicle secondary suspension to reduce and absorb the vibration and noise. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristics and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestically developed productions are shown in good results. And to guarantee the adaption of air spring, the ride comfort and air pressure variation were measured in train test on subway line.

Optimization of the Spring Design Parameters of a Circuit Breaker to Satisfy the Specified Dynamic Characteristics

  • Gil Young;Kwang Young
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.43-49
    • /
    • 2004
  • A spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of the electric contacts of a vacuum circuit breaker. If the type of a circuit breaker and the structure of the linkage system are predetermined, then design parameters such as stiffness, free length and attachment points of the spring become the important issues. In this paper, based on the energy conservation, the total system energy is constant throughout the operating range of the mechanism; a systematic procedure to optimize the spring design parameters is developed and applied to a simplified mechanism of a circuit breaker. The developed procedure is converted to the environment of the multi-body dynamics program, ADAMS for an in-depth consideration of the complex dynamics of a circuit breaker mechanism.

규정된 동적특성을 위한 회로차단기의 스프링 설계변수의 최적화 (Optimization of the Spring Design Parameters of a Circuit Breaker for Satisfying Specified Dynamic Characteristics)

  • 안길영;정광영
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.132-138
    • /
    • 2004
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. If the type and structure of the linkage system required to the circuit breaker is predetermined, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the energy conservation that the total system energy is constant throughout the operating range of the mechanism, a systematic procedure for optimizing the spring design parameters is developed and applied to the simplified mechanism of a circuit breaker. Then, in order to consider the complex dynamics of the circuit breaker mechanism rather well, the developed procedure is converted to the environment of a multi-body dynamics program ADAMS.

범프포일 강성변화에 대한 포일저널 베어링의 정적, 동적 성능해석 (The Static and Dynamic Performance Analyses of Air Foil Journal Bearing for Various Bump Foil Stiffness)

  • 김경웅;이동현;김영철
    • Tribology and Lubricants
    • /
    • 제20권5호
    • /
    • pp.245-251
    • /
    • 2004
  • This paper presents the effects of the bump foil stiffness on the static and dynamic performance of the foil journal bearings. Reynolds equation is used for the static and dynamic performance analyses. To consider the deflection of top foil the top foil is modeled as a elastic beam and the bump foil is modeled as a spring. So in the static performance analysis the load capacity is compared to the various bump foil stiffness and in the dynamic performance analysis the trajectory of journal center is compared to the various bump foil stiffness.

가선계의 동특성 해석 (A Study on the Dynamic Characteristics of Catenary)

  • 최병두;김정수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.525-532
    • /
    • 1998
  • In this study, dynamic characteristics of catenary that supplies electrical power to high-speed trains is investigated. A particular emphasis is placed on the effect of droppers on the dynamic response of the contact wire, a dropper is an element that connects the contact wire with the messenger wire so as to maintain near uniform compliance, Finite element model compressing 3 spans is constructed. For the linear model, droppers are modeled as linear springs with various stiffness values. Modal analysis is performed to obtain the natural frequencies and modes and the variation in the modal density distribution for changing stiffness values are noted. Impulse response is also obtained through computer simulation. In practice, dropper is a nonlinear element with low stiffness in compression and high stiffness in tension. Hence, dropper can be modeled as a nonlinear spring with hi-directional stiffness values. Impulse and harmonic responses are obtained for the nonlinear model through simulation. The responses aye also compared with the linear cases.

  • PDF

선반 구조변경을 위한 현장용 공구대 강성계산모델 (Practical Turret Stiffness Calculation Model to Modify Lathe Structure)

  • 허성혁;김수진
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.19-24
    • /
    • 2017
  • In this research, a practical stiffness calculation method is developed and applied for modifying the height of the headstock, turret, and tailstock of a CNC lathe to enlarge the turntable diameter. The casting structure is assumed to be a rigid body and the linear motion element to be an elastic spring to simplify the turret stiffness calculation model. The stiffness of the sliding guide and ball screw of the original lathe is measured with a push tester and LVDT sensor, and the turret stiffness of the modified lathe is predicted and compared with experimental results to verify the model. The measured stiffness of the original turret is $0.17kN/{\mu}m$ and that of the modified turret is $0.11kN/{\mu}m$, i.e., an 18% difference from the predicted result. The verified stiffness calculation model can be used to develop another modified lathe.

무릎 골관절염 환자의 보행속도에 따른 하지 관절 강성 변화 (Changes of Lower Limb Joints Stiffness with Gait Speed in Knee Osteoarthritis)

  • 박희원;박수경
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.723-729
    • /
    • 2012
  • Spring-like leg models have been employed to explain various dynamic characteristics in human walking. However, this leg stiffness model has limitations to represent complex motion of actual human gait, especially the behaviors of each lower limb joint. The purpose of this research was to determine changes of total leg stiffness and lower limb joint stiffness with gait speed in knee osteoarthritis. Joint stiffness defined as the ratio of the joint torque change to the angular displacement change. Eight subjects with knee osteoarthritis participated to this study. The subject walked on a 12 m long and 1 m wide walkway with three sets of four different randomly ordered gait speeds, ranging from their self-selected speed to maximum speed. Kinetic and kinematic data were measured using three force plates and an optical marker system, respectively. Joint torques of lower limb joints calculated by a multi-segment inverse dynamics model. Total leg and each lower limb joint had constant stiffness during single support phase. The leg and hip joint stiffness increased with gait speed. The correlation between knee joint angles and torques had significant changed by the degree of severity of knee osteoarthritis.