• 제목/요약/키워드: spring steel

검색결과 351건 처리시간 0.03초

균열 특성 개선을 위한 2단 쇼트피닝 가공 (2-Step Shot Peening Process for the Improvement of Fatigue Crack Growth Properties)

  • 이승호;심동석
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.67-72
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, crack growth tests are conducted on spring steel and shot peened specimens. And then the residual stresses and fractographs are examined. The crack growth equation that can describe the whole crack growth behavior is used to evaluate the experiment results. The results show that fatigue crack glows slowly in the shot peened specimen than in the unpeened. And in the case of the 2-step shot peened specimen the initial stress intensity factor range and the fracture toughness is higher than the unpeened specimen due to the compressive residual stress. Fractographs show that the compressive residual stress of the surface suppress the fatigue crack opening and consequently slow crack growth rates.

  • PDF

강섬유보강 습식 숏크리트의 리바운드 저감대책 (Countermeasure of rebound reducing for wet-mixed steel fiber reinforced shotcrete)

  • 임주영;박해균;이명섭;조남섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1162-1167
    • /
    • 2004
  • From the early 1980's, the New Austrian Tunnelling Method (NATM) has been developed as a one of the standard tunneling method in Korea. Owing to the results of many researches, the practical problems of shotcrete has been improved for a last decade. However, the excess amount of rebound still remains one of the critical problems in shotcrete technology. In order to improve for this rebound problem, recently developed cement mineral accelerator has been successfully applied to several NATM tunnels in Korea. An experimental investigation was carried out in order to verify the rebound characteristics of wet-mix Steel Fiber Reinforced Shotcrete (SFRS) with powder types cement mineral accelerator. Mortar setting test, SEM analysis, bonding test under spring water condition and rebound test were conducted. From the result, wet-mix SFRS with cement mineral acelerator exhibited excellent bonding characteristics even spring water condition and less rebound ratio compared to the conventional liquid accelerator.

  • PDF

자동차용 스프링강의 온도변화에 따른 피로 및 파괴인성에 관한 연구 (A Study on Fatigue and Fracture Toughness on Change Temperature of Spring Steel for Automobile)

  • 김추용;박원조;정재욱;허선철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.308-313
    • /
    • 2004
  • Recently, the steel parts used for automobiles and trains are required to be used under higher stress than ever before in need of the weight down. In this study, high strength and superior toughness spring steels as the suspension material, used for automobile and railroad industries were utilized to carry out the following in vestigations; 1) To evaluate the characteristics of fatigue crack propagation, the experiments of fatigue crack growth were respectively carried out at the room temperature(RT), $100^{\circ}C$, $200^{\circ}C$ 2) Peening and unpeening materials at the each temperature were investigated for the effect on fracture toughness by compressive residual stress generated from the shot peeing.

  • PDF

압축잔류응력이 스프링강(SUP-9)의 고온파괴인성에 미치는 영향에 관한 연구 (A Study on High Temperature Fracture Toughness Characterisitics of Spring Steel by Compressive Residual Stress)

  • 정재욱;박원조;이광영;허선철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.314-319
    • /
    • 2004
  • High temperature fracture toughness characteristics of shot peened spring steel(SUP-9), which is used for automobile suspension system and railroad, was investigated in this paper. Fracture tougness test for room temperature, $100^{\circ}C$ , and $200^{\circ}C$ were evaluated by material test system(MTS). The experimental results show that the fracture toughness was improved by peened and unpeened. The fracture toughness for high temperature were also improved by peened and unpeened.

  • PDF

SUP9 스프링강의 쇼트피닝가공에 의한 피로수명향상과 고온환경에서의 압축잔류응력 소멸현상에 관한 연구 (A Study of Shot peened Spring Steel for Fatigue Life Improvement and Compressive Residual Stress Disappearance on the High Temperature)

  • 박경동;손명군
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.347-353
    • /
    • 2002
  • The compressive residual stress, which is induced by shot peening process, seems to be an important factor of increasing the fatigue strength. And then it was showed that residual stress was disappearenced at the high temperature. The fatigue characteristic study of a SUP9 spring steel processed shot peening is performed by considering the high temperature service conditions in the range of room temperature through $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The fatigue resistance characteristics and fracture strength at high temperature is considerable lower than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

차량용 스프링강의 피로거동에 미치는 온도의 영향 (An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle)

  • 박경동;류찬욱
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

숏피닝 가공재의 저온 피로 강도 평가 (An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature)

  • 박경동;권오헌
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.

2단쇼트피닝에 의한 피로특성의 향상 (The Improvement of Fatigue Properties by 2-step Shot Peening)

  • 이승호;심동석
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.475-479
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, tests are conducted on spring steel and shot peened specimens. Various tests are accomplished to evaluate mechanical properties influenced by shot peening process, and fatigue tests are also performed to evaluate the improvement of fatigue strength. And then the residual stresses are examined. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength of notched specimen remarkably increased. In the case of 1-step shot peening, fatigue strength increased by about 20% than unpeened specimen. Especially, in the case of 2-step shot peening, fatigue strength increased by about 40%, because the residual compressive stress at surface was higher than that of 1-step shot peened specimen. The fatigue strength and life are closely related to the value and position of maximum compressive residual stress by shot peening.

초음파법에 의한 스프링강의 재질평가에 관하여 (On Evaluation of Material Properties in Spring Steels by Measurement of Ultrasonic Techniques)

  • 김상수;하경준;김선진
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.41-46
    • /
    • 2002
  • The general purpose of this paper is Evaluation of material properties in spring steels by investigate correlation between ultrasonic attenuation and virker's hardness, charpy impact properties, microstructures. The three test speciments of the $490{\times}90 mm$ plates and 20 mm thick are used but differ in heat treatment, one is rolled plate, the second is quenched and then tempered, and the third is quenched. ultrasonic attenuation were obtained at fifteen locations on the plates. In order to investigate the correlation between hardness ( especially, HV ) and the attenuation, the virker's hardness and the microstructures were observed for three spring steels. also the charpy impact test were carried out at the room temperature in order to investigate the relationship between impact properties and the attenuation. The experimental results obtained from three different spring related to the heat treatment conditions and attenuation coefficient is increased with increasing the hardness(HV). Ultrasonic attenuation coefficients have shawn are ability to distinguish among spring steels.

  • PDF

운송 차량용 판 스프링의 파손 해석 (Damage Analysis of Leaf Spring for Transport Utility Vehicles)

  • 김태송;강석희;권영국;윤서현;남기우
    • 한국산업융합학회 논문집
    • /
    • 제25권6_2호
    • /
    • pp.1047-1053
    • /
    • 2022
  • The leaf spring for a truck absorbs shocks or vibrations from the road surface while driving with the elastic force of the material and prevents the shock from being transmitted to the vehicle body. It is subjected to cyclic stress, and fatigue fracture occurs frequently. This study analyzes fractured leaf spring from a 25 ton truck that has been operating for about a year. In the fractured portion, which is the origin of crack, inclusions were observed, and fatigue failure was caused by cyclic stress. In the stress calculation and FE analysis, the stress at the center of the leaf spring was obtained to be 54~65% of the yield strength of the base material and damaged material. It is most important to prevent the mixing of impurities in the steel manufacturing for leaf springs. The large stress portion of the leaf spring needs to introduce compressive residual stress by peening etc.