• Title/Summary/Keyword: spring mass

Search Result 913, Processing Time 0.031 seconds

Dynamic Analysis on the Closing Resistors of Gas Insulated Switchgear

  • Cho Hae-Yong;Lee Sung-Ho;Lim Sung-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1607-1613
    • /
    • 2006
  • GIS (Gas Insulated Switchgear) is used in electric power system to insure non conductivity, breaking capacity and operating reliability. In the present study, dynamic analysis on the closing resistors of the GIS has bees carried out by the commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS. In order to find the minimum value of chatter vibration of closing resistors, the motion of moving and fixed resistor parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed resistor parts. The simulated results were compared with experimental results. The application of the results could reduce chatter vibration of closing resistors of the GIS. These data are also useful on the development of future model GIS with minimum chatter vibration for the determinations of the spring constant, the damping coefficient and mass of a moving part.

Super-Elongation Avoidance in Mass-Spring Model (질량-스프링 모델에서의 과다 신장 문제 해결 방법)

  • Bae, Hee-Jung;Baek, Nak-Hoon;Ryu, Kwyan-Woo;Jang, Byung-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.631-634
    • /
    • 2001
  • 가상 현실이나 게임 제작 분야에서는 움지임에 따른 변형을 실시간으로 처리하는 것이 요구되고 있다. 변형 처리를 위한 일반적인 모델은 질량-스프링(mass-spring) 방법을 이용한 것으로, 그 구현이 쉽고 처리 속도가 빨라 대화형 시스템(interactive system)에서 실시간 처리를 위한 모델로 주목되고 있다. 반면에, 이 모델은 외부의 제어에 대하여 super-elastic한 문제를 내포하여 그 적용이 제한되어 있다. 본 논문에서는 스프링 모델의 근본적인 문제인 super-elastic 문제를 극복하기 위한 근사 방법을 제안한다. 제안하는 방법은 하이브리드 접근 방식으로, 이산 점 사이의 내부 힘들을 선처리(pre-processing)하여 elastic한 성분을 나누어 처리한다. 선처리 과정에서는 변형 물체의 물리적 속성에 따라 늘어나는(elongation) 성분과 굽어지는(bending) 성분을 따로 처리함으로써, 극심히 늘어나는(super-elongation) 문제를 극소화할 수 있다. 본 논문의 결과로는 빈번한 제어에 대응되는 움직임을 빠르게 생성할 수 있음을 보이며, 안정적이면서 그럴 듯한 움직임을 생성할 수 있음을 보인다.

  • PDF

Stability Analysis of Beck's Column (Beck 기둥의 안정성 해석)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kang, Hee-Jong;Kim, Gwon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.903-906
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the uniform Beck's columns with a tip spring, carrying a tip mass. The ordinary differential equation governing free vibrations of such Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the mass moment of inertia and spring parameter.

  • PDF

Design of double dynamic vibration absorbers for reduction of two DOF vibration system

  • Son, Lovely;Bur, Mulyadi;Rusli, Meifal;Adriyan, Adriyan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.161-178
    • /
    • 2016
  • This research is aimed to design and analyze the performance of double dynamic vibration absorber (DVA) using a pendulum and a spring-mass type absorber for reducing vibration of two-DOF vibration system. The conventional fixed-points method and genetics algorithm (GA) optimization procedure are utilized in designing the optimal parameter of DVA. The frequency and damping ratio are optimized to determine the optimal absorber parameters. The simulation results show that GA optimization procedure is more effective in designing the double DVA in comparison to the fixed-points method. The experimental study is conducted to verify the numerical result.

Computing of output of piezoelectric actuator under voltage excitation

  • Yongfeng Fang;Kong Fah Tee;Yong Yan
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.359-364
    • /
    • 2024
  • It is difficult to calculate the output force of a single-layer piezoelectric actuator under voltage excitation. In this paper, the piezoelectric actuator is organically combined with the mass-spring-damping system, and the deformation of the piezoelectric actuator under voltage excitation is transformed into the displacement of the mass-spring-damping system. Then, according to the differential equation of the system, the formulae of the mechanical output of the piezoelectric actuator under sinusoidal alternating current and DC step excitation are obtained by using the Laplace change and the inverse change, respectively. Finally, the proposed equations are verified by using ceramic piezoelectric actuators and PVDF actuators, respectively. The results are compared with the existing ones, which shows that the proposed method is feasible, easy, and practical.

Optimum Allocation of Pipe-suport by Genetic algorithm (2nd Reports, In Case of Seismic Excitation) (유전 알고리즘에 의한 배관 지지대의 최적배치)

  • 양보석;전상범;유영훈;김진욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.128-132
    • /
    • 1997
  • This paper deals with the optimization of pipe-support allocation using the genetic algorithm, and shows the feasibility of the optimization method to actual design problems and also the convergence characteristics of optimization calculation with respect to the various seismic waves. The piping system was modeled as mass-spring system with 5 degrees of freedom and the support was as spring-damper. The support allocation problem was formulated to minimize the response of the piping system to seismic excitation.

  • PDF

Effect of Control Valve Flow Rates Characteristics on the Performance of an Air Spring (제어밸브의 유량특성에 따른 에어스프링의 성능 변화)

  • Han, Seung Hun;Jang, Ji Seong;Ji, Sang Won
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.8-14
    • /
    • 2016
  • This study describes the effect of the critical pressure ratio of a control valve on the performance of an air spring system composed of an air spring, auxiliary chamber, control valve and mass in order to suggest a more efficient design for an air spring system. The critical pressure ratio of the control valve is assumed to have a fixed value, but the critical pressure ratio of the control valve is known to have various values between 0.05 and 0.6, and the effect of the variation of the critical pressure ratio on the performance of the air spring system has not yet been reported. The analysis derives nonlinear and linear governing equations of the air spring system, including the critical pressure ratio of the control valve. This simulation study is presented to show that the impedance and transmissibility characteristics of the air spring system change due to variations in the critical pressure ratio of the control valve as well as its sonic conductance. As a result, the critical pressure ratio of the control valve should be maintained as large as possible to improve the vibration isolation characteristics of the air spring system.

Analysis and Small Scale Model Expriment on the Vertical Vibration of the KT-23 Type Passenger Vehicle (KT-23형 여객 차량의 상하 진동 해석 및 축소모형 실험)

  • 최경진;이동형;장동욱;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2003
  • The purpose of this study is to obtain the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type Passenger vehicle. According to the analysis and the small scale model car test. optimal condition was obtained for the stiffness ratio of secondary spring to primary spring of the suspension system and the mass ratio of the bogie frame to the car body. The analysis of the study shows that if the car body mass is increased or secondary stiffness Is lowered, the vertical vibration level is reduced and the passenger comfort can be improved. Especially, strong peaks are occurred in the frequencies corresponding to the rotational speed of driving axle and vehicle wheel. Hence, in order to obtain the dynamic characteristics through the small scale model car, the driving method of the vehicle on the test bench, rotational characteristics of the wheel and the natural modes of vehicle should be investigated and be modified.

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.

Exact vibration of Timoshenko beam combined with multiple mass spring sub-systems

  • El-Sayed, Tamer A.;Farghaly, Said H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.989-1014
    • /
    • 2016
  • This paper deals with the analysis of the natural frequencies, mode shapes of an axially loaded beam system carrying ends consisting of non-concentrated tip masses and three spring-two mass sub-systems. The influence of system design and sub-system parameters on the combined system characteristics is the major part of this investigation. The effect of material properties, rotary inertia and shear deformation of the beam system is included. The end masses are elastically supported against rotation and translation at an offset point from the point of attachment. Sub-systems are attached to center of gravity eccentric points out of the beam span. The boundary conditions of the ordinary differential equation governing the lateral deflections and slope due to bending of the beam system including developed shear force frequency dependent terms, due to the sub.system suspension, have been formulated. Exact formulae for the modal frequencies and the modal shapes have been derived. Based on these formulae, detailed parametric studies are carried out. The geometrical and mechanical parameters of the system under study have been presented in non-dimensional analysis. The applied mathematical model is presented to cover wide range of mechanical, naval and structural engineering applications.