• 제목/요약/키워드: spring damper

검색결과 406건 처리시간 0.025초

일차 홀드 방식의 반력 구현 시스템에 대한 안정성 해석 (Stability Analysis of a Haptic System with a First-Order-Hold Method)

  • 이경노
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.389-394
    • /
    • 2014
  • This paper presents the effect of a reflective force computed from a first-order-hold method on the stability of a haptic system. A haptic system is composed of a haptic device with a mass and a damper, a virtual spring, a sampler and a sample-and-hold. The boundary condition of the maximum virtual stiffness is analytically derived by using the Routh-Hurwitz criterion and the condition shows that the maximum virtual stiffness is proportional to the square root of the mass and the damper of a haptic device and also is inversely proportional to the sampling time to the power of three over two. The effectiveness of the derived condition is evaluated by the simulation. When the reflective forces are computed by using the first-order-hold method, the maximum available stiffness to guarantee the stability is increased several hundred times as large as when the zero-order-hold method is applied.

자동차탑재용 컴펙트 디스크 플레이어의 진동특성 연구 (The Vibration Study on Car Compact Disk Player)

  • 이태근;김병삼
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.283-288
    • /
    • 2006
  • This study developes the vibration model to estimate the vibration energy of damper/spring assembly(mainbase assembly) for car CD player, and this model is verified by experiment. From frequency response, response, we investigate the natural frequency and mode shape in the up/down direction. In order to determine the analysis frequency band, we investigate the excitation frequency from the vehicle test. As the characteristics of damper and spring is changed, we carry out the vibration test(transmissibility) and investigate the change of transmissibility.

  • PDF

대형 초정밀 스테이지용 복합 아이솔레이터 개발 (Development of the Hybrid Vibration Isolator for Large Superprecision Stage)

  • 김원겸;정순철;장승환;이재응;신동수;이재정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1404-1408
    • /
    • 2006
  • In this paper, a hybrid-type vibration isolator which has air chamber(spring) and viscous damper in series is developed. The developed vibration isolator is designed to perform 3 following functions : spring function for normal operating conditions, damping function to reduce an impact for sudden move of upper beam, and finally leveling function. Based on the given natural frequency and damping factor, the design procedure is proposed. The performance of the developed isolator is tested by measuring stiffness and damping.

  • PDF

SVM기법을 이용한 진동계의 고장진단에 관한 연구 (Abnormal Diagnostics of Vibration System using SVM)

  • 고광원;오용설;정근용;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.932-937
    • /
    • 2003
  • When oil pressure of damper is lost or relative stiffness of spring drops in vibration system, it can be fatally dangerous situation. A fault diagnosis method for vibration system using Support Vector Machine(SVM)is suggested in the paper. SVM is used to classify input data or applied to function regression. System status can be classified by judging input data based on optimal separable hyperplane obtained using SVM which learns normal and abnormal status. It is learned from the relationship of system state variables in term of spring, mass and damper. Normal and abnormal status are learned using phase plane as in put space, then the learned SVM is used to construct algorithm to predict the system status quantitatively

  • PDF

Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers

  • Fu, Chuan
    • Structural Engineering and Mechanics
    • /
    • 제33권3호
    • /
    • pp.339-355
    • /
    • 2009
  • The sealed, tuned liquid column gas damper (TLCGD) with gas-spring effect extends the frequency range of application up to about 5 Hz and efficiently increases the modal structural damping. In this paper the influence of several TLCGDs to reduce coupled translational and rotational vibrations of plan-asymmetric buildings under wind or seismic loads is investigated. The locations of the modal centers of velocity of rigidly assumed floors are crucial to select the design and the optimal position of the liquid absorbers. TLCGD's dynamics can be derived in detail using the extended non-stationary Bernoulli's equation for moving reference systems. Modal tuning of the TLCGD renders the optimal parameters by means of a geometrical transformation and in analogy to the classical tuned mass damper (TMD). Subsequently, fine-tuning is conveniently performed in the state space domain. Numerical simulations illustrate a significant reduction of the vibrations of plan-asymmetric buildings by the proposed TLCGDs.

자동귀환 서랍의 감성품질에 대한 설계인자 영향 분석 (Effects of Design Parameters on the Ergonomic Quality of a Self-Closing Drawer)

  • 서만철;김권희
    • 한국정밀공학회지
    • /
    • 제33권8호
    • /
    • pp.655-660
    • /
    • 2016
  • Self-closing drawers are used in high-end products, such as furniture, home appliances, and a range of other storage devices. In this study, a self-closing mechanism is proposed. A system consisting of a friction latch, constant force spring, rotary damper with rack, and pinion is developed. The retracting drawer can be latched at any position and can be reactivated by simple touch. The constant force spring and rotary damper offer smooth closing action. The ergonomic quality of the closing action is quantified by an index based on velocity-time behavior. The effects of various design parameters are analyzed with a dynamics model and experimentally validated by prototype testing.

현가장치의 비선형 설계변수 추정 (Nonlinear Parameter Estimation of Suspension System)

  • 박주표;최연선
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.158-164
    • /
    • 2003
  • The suspension system of cars is composed of dampers and springs, which usually have nonlinear characteristics. The nonlinear characteristics make the differences in the results of analytical models and experiments. In this study, the nonlinear system identification method which does not assume a special form for nonlinear dynamic systems and minimize the error by calculating the error reduction ratio is devised to estimate the nonlinear parameters of the suspension system of an EF-SONATA car from the field running test data. The results show that the spring has a cubic nonlinear term and the damper has a coupled nonlinear term. Also, the numerical results with the estimated nonlinear parameters agree well with the field test data for the different running speeds.

타이어 공기압에 따른 ER 댐퍼 장착 승용차의 승차감분석 (Ride Comfort Analysis of Passenger Vehicle Featuring ER Damper with Different Tire Pressure)

  • 성금길;최승복
    • 한국소음진동공학회논문집
    • /
    • 제26권2호
    • /
    • pp.210-216
    • /
    • 2016
  • In this work, performance analysis to improve ride comfort of an ER (electrorheological) fluid damper for a mid-sized passenger vehicle in terms of tire pressure is presented. An ER damper by considering specification for a mid-sized commercial passenger vehicle is proposed and mechanically designed. After manufacturing and assembling the proposed ER damper with design parameters, their performance such as field-dependent damping forces are experimentally measured. A quarter-vehicle ER ECS (Electronic Control Suspension) system consisting of the ER damper, sprung mass, spring, sky-hook controller and tire is constructed to analysis the ride comfort performances. Vertical tire stiffness with different tire pressure is experimentally measured and investigated. In addition, ride comfort analysis such as vertical acceleration root mean square (RMS) of sprung mass is investigated under bump road using quarter-vehicle test equipment.

A semi-active smart tuned mass damper for drive shaft

  • 채교초;박정헌;이철희;박정률;윤동영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.349-354
    • /
    • 2011
  • Tuned mass damper is widely used in many applications of industry. The main advantage of tuned mass damper is that it can increase the damping ratio of system and reduce the vibration amplitude. Meanwhile, the natural frequency of system will be divided by two peaks, and the peak speeds are closely related to the mass and the stiffness of auxiliary mass system added. In addition, the damping ratio will also affect the peak frequency of the dynamic response. In the present research, the nonlinear mechanical characteristics of rubber is investigated and put into use, since it is usually manufactured as the spring element of tuned mass damper. By the sense of the nonlinear stiffness as well as the damping ratio which can be changed by preload applied on, the shape memory alloy is proposed to control the auxiliary mass system by self-optimizing. Supported by the experiment data of rubber, the 1 DOF theoretical model and finite element model based on computer simulation are implemented to perform the feasibility of the proposed semi-active tuned mass damper working on the drive shaft.

  • PDF

샘플-홀드 방식과 햅틱 장치 물성치에 따른 햅틱 시스템의 안정성 분석 (Stability of Haptic System with consideration for Sample-and-Hold Methods and Properties of Haptic Device)

  • 이경노
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.5338-5343
    • /
    • 2013
  • 햅틱 시스템에서 가상 벽의 스프링상수 (Kw)가 크면 클수록 사용자는 실제 벽처럼 느끼지만 햅틱 시스템은 그만큼 불안정해진다. 그래서 시스템의 안정성을 유지하면서 가상 벽에 대한 사용자 몰입감을 향상시키기 위해서 일차 홀드 방식을 이용한 방법을 제시하고자 한다. 특히 가상 벽 (virtual wall)로 구성된 가상 환경과 상호 작용할 때 일차홀드 (FOH) 방식을 이용하는 경우 햅틱 장치의 물성치인 질량 (Md)과 댐핑 상수 (Bd)가 시스템의 안정성에 미치는 영향을 분석한다. 시뮬레이션을 통해 시스템의 안정성을 유지하는 가상 벽의 스프링 상수 (Kw)가 햅틱 장치의 질량 (Md)과 댐핑 상수 (Bd)의 제곱근에 비례한다는 것을 보이고, 이를 통해 기존의 영차홀드 (ZOH) 방식보다 큰 가상 스프링의 구현이 가능함을 보인다. 따라서 사용자의 몰입감 높은 햅틱 시스템 구현이 가능함을 보인다. 그리고 시뮬레이션 결과분석을 통해 시스템 안정성을 보장하는 가상 스프링 상수 (Kw)의 범위를 샘플링 주기 (T), 햅틱 장치의 질량 (Md), 댐핑 상수 (Bd)의 관계로 유도한 결과가 $K_w{\leq}{1.611M_d}^{0.50}{B_d}^{0.50}T^{-1.51}$ 임을 보인다. 이 때 시뮬레이션 결과와의 상대 오차가 평균 0.53%로 매우 작다.