• Title/Summary/Keyword: spreader

Search Result 177, Processing Time 0.031 seconds

The Study of 3-Dimension Dynamic Characteristics of Gantry Crane (갠트리 크레인의 3차원 동특성에 관한 연구)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.708-712
    • /
    • 2000
  • The sway motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to investigate the phenomenon that the load is taken by the sway motion of crane. For deriving the dynamic equations related to the swing motion of crane, we introduced a conception of spring and damper in the upper part of the crane. During the crane and trolley is driving along the velocity profile, the swing motion of the spreader and crane will be simulated. The simulation result of the equation of motion using the Rung-Kutta method is presented in this paper. And we will show an effect of the swing of the crane in this research.

  • PDF

The Effect of Impact Absorbing System Deformation According to the Variation of Cylinder Wall Dimensions on Damping Coefficient (실린더 벽면 치수변화에 따른 변형이 충격흡수장치 감쇠계수에 미치는 영향)

  • 한근조;안찬우;안성찬;심재준;김성윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.765-768
    • /
    • 1997
  • Many malfunctions take place in container crane spreader due to impact. So we designed a hydraulic impact absorbing equipment to absorb the impact and we studied the change of damping coefficient with respect to the variation of dimensions of oil-cylinder wall. When we design the dimension of hydraulic cylinder wall considering the displacement on the wall, the value of it over 20mm didn't affect the damping coefficient.

  • PDF

Design Optimization of GaAs Wafer Bonding Module (GaAs 웨이퍼 본딩모듈의 최적화 설계)

  • 지원호;송준엽;강재훈;한승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.860-864
    • /
    • 2003
  • Recently. use of compound semiconductor is widely increasing in the area of LED and RF device. In this study, wafer bonding module is designed and optimized to bond 6 inches device wafer and carrier wafer. Bonding process is performed in vacuum environment and resin is used to bond two wafers. Load spreader and double heating mechanisms are adopted to minimize wafer warpage and void. Structure and heat transfer analyses show the designed mechanisms are very effective in performance improvement.

  • PDF

Impact Analysis For a 2-DOF Shock Absorbing System with Multi-Step Damping Coefficient (다단계 감쇠계수를 갖는 2자유도계 충격흡수장치의 충격해석)

  • 김성윤;심재준;한동섭;안성찬;한근조;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.871-874
    • /
    • 2002
  • Many malfunctions take place in container crane spreader due to impact. So we designed a 2DOF hydraulic impact absorbing system with multi-step damping coefficient and studied the effect of orifice's interval and damping coefficient. The damping coefficient of upper piston was found to be 180 N.s/m, and the orifice's interval to be 9mm, the max reaction force and the average reaction force might be lowest. Compared with a general 2-DOF impact absorbing system, the max reaction force reduced by 46%., and average reaction force reduced by 5%.

  • PDF

Ultra High Conductivity Diamond Composites

  • Bollina, Ravi;Stoiber, Monika
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.922-923
    • /
    • 2006
  • Thermal management is one of the critical aspects in the design of highly integrated microelectronic devices. The reliability of electronic components is limited not only to operating temperature but also by the thermal stresses caused during the operation. The need for higher power densities calls for use of advanced heat spreader materials. A copper diamond composite has been developed with high thermal conductivity $(\lambda)$ and tailorable coefficient of thermal expansion (CTE). Copper diamond composites are processed via gas pressure assisted infiltration with different copper alloys. Emphasis has been placed on the addition of trace elements in deisgning the copper alloys to facilitate a compromise between thermal conductivity and mechanical adhesion. The interfaces between the alloy and the diamond are related to the thermal properties of these copper composites.

  • PDF

A Development of Anti-sway System for Real Application: Measurement and Control of Crane Motions Using Camera (실용화를 고려한 Anti-Sway 시스템 구축: 카메라를 이용한 크레인 운동 계측 및 제어)

  • Kawai, Hideki;Kim, Young-Bok;Choe, Yong-Woon;Yang, Joo-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.90-96
    • /
    • 2008
  • In general, the swing motions of a crane are controlled and suppressed by controlling the trolley motion. In many of our previous studies, we suggested a new type of anti-sway control system for a crane. In this proposed control system, a small auxiliary mass (moving-mass) is installed on the spreader and moving this auxiliary mass controls tire swing motion. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. However, measuring systems based on a laser sensor or other means are not veryuseful in real-worldapplications. So, in this paper, animage sensor is used to measure the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method called Vector Code Correlation (VCC), which was devised to consider real environmental conditions. The H $\infty$ based control technique is applied to suppress the swing motion of the crane. Experimental results showed that the proposed measurement and control system based on an image sensor is useful and robust to disturbances.

Development of a Cooling System for a Concentrating Photovoltaic Module (고집광 태양전지 모듈의 냉각시스템 개발)

  • Kim, Tae-Hoon;Do, Kyu-Hyung;Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.551-560
    • /
    • 2011
  • In this paper, a cooling system that includes a heat spreader and a natural convective heat sink is proposed for the cooling of a concentrating photovoltaic (CPV) module. The heat spreader and the natural convective heat sink are designed on the basis of previous analytical investigations. In order to evaluate the proposed cooling system, we conducted experimental investigations varying the heat rate and the inclined angle of the cooling system. From the experimental results, it is found that the proposed cooling system satisfies the design constraints for good operation of the CPV module. Finally, a correlation is suggested for estimating the effects of the heat rate and the inclined angle on the thermal performance of the natural convective heat sink is suggested.

Identification and molecular characterization of downy mildew resistant gene candidates in maize (Zea mays subsp. Mays)

  • Kim, Jae Yoon;Kim, Chang-Ho;Kim, Kyung Hee;Lee, Byung-Moo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.113-113
    • /
    • 2017
  • Downy mildew (DM), caused by several species in the Peronosclerospora and Scleropthora genera, is a major maize (Zea mays L.) disease in tropical or subtropical regions. DM is an obligate parasite species in the higher plants and spreads by oospores, wind, and mycelium in seed surface, soil, and living hosts. Owing to its geographical distribution and destructive yield reduction, DM is one of the most severe maize diseases among the maize pathogens. Positional cloning in combination with phenotyping is a general approach to identify disease resistant gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combination strategy to improve the identification of disease resistant gene candidates. Downy mildew (DM) resistant maize was selected from five cultivars using the spreader row technique. Positional cloning and bioinformatics tools identified the DM resistant QTL marker (bnlg1702) and 47 protein coding genes annotations. Eventually, 5 DM resistant gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative RT-PCR without fine mapping of the bnlg1702 locus. Specifically, we provided DM resistant gene candidates with our new strategy, including field selection by the spreader row technique without population preparation, the DM resistance region identification by positional cloning using bioinformatics tools, and expression level profiling by quantitative RT-PCR without fine mapping. As whole genome information is available for other crops, we propose applying our novel protocol to other crops or for other diseases with suitable adjustment.

  • PDF

Analysis and Control of Uniformity by the Feed Gate Adaptation of a Granular Spreader (입제비료 살포기의 출구조절에 의한 균일도의 분석과 제어)

  • Kweon, G.;Grift, Tony E.;Miclet, Denis;Virin, Teddy;Piron, Emmanuel
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • A method was proposed which employed control of the drop location of fertilizer particles on a spinner disc to optimize the spread pattern uniformity. The system contained an optical sensor as a feedback mechanism, which measured discharge velocity and location, as well as particle diameters to predict a spread pattern of a single disc. Simulations showed that the feed gate adaptation algorithm produced high quality patterns for any given application rate in the dual disc spreader. The performance of the feed gate control method was assessed using data collected from a Sulky spinner disc spreader. The results showed that it was always possible to find a spread pattern with an acceptable CV lower than 15%, even though the spread pattern was obtained from a rudimentary flat disc with straight radial vanes. A mathematical optimization method was used to find the initial parameter settings for a specially designed experimental spreading arrangement, which included the feed gate control system, for a given flow rate and swath width. Several experiments were carried out to investigate the relationship between the gate opening and flow rate, disc speed and particle velocity, as well as disc speed and predicted landing location of fertilizer particles. All relationships found were highly linear ($r^2$ > 0.96), which showed that the time-of-flight sensor was well suited as a feedback sensor in the rate and uniformity controlled spreading system.