• Title/Summary/Keyword: spray rate

Search Result 938, Processing Time 0.026 seconds

An experimental study on the injection and spray characteristics of butanol (부탄올의 분사 및 분무특성에 관한 실험적 연구)

  • JEONG, Tak-Su;WANG, Woo-Gyeong;KIM, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.89-97
    • /
    • 2017
  • Butanol has an ability to improve the ignition quality due to its lower latent heat of vaporization; it has an advantage to reduce a volume of a fuel tank because its energy density is higher than that of ethanol. Also, butanol-diesel oil blending quality is good because butanol has an effect to prevent the phase-separation between two fuels. Even if the blended oil contains water, it can reduce the corrosion of the fuel line. Thus, it is possible to use butanol-diesel oil blended fuel in diesel engine without modification, and it may reduce the environment pollution due to NOx and particulate and the consumption of diesel oil. Therefore, some studies are being advanced whether butanol is adequate as an alternative fuel for diesel engines, and the results of the combustion and exhaust gas emission characteristics are being presented. Though the injection and spray characteristics of butanol are more important in diesel combustion, the has not yet dealt with the matter. In this study, the influence in which differences of physical properties between butanol and diesel oil may affect the injection and spray characteristics such as injection rate, penetration, spray cone angle, spray velocity and process of spray development were examined by using CRDI system, injection rate measuring device and spray visualization system. The results exhibited that the injection and macroscopic spray characteristics of two fuels were nearly the same.

A Study on Atomization Characteristics of Gasoline Impinging Spray Using Glow plug (글로우플러그를 이용한 충돌분무의 미립화특성에 관한 연구)

  • 문영호;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.54-61
    • /
    • 2001
  • It is reported that during the cold starting, especially in gasoline engine, the engine response and the effect of HC emission can be improved by prompting atomization and reducing the quantity of fuel adhered to the range of injector tip, inlet port, and inlet valve. The purposes of this study are to promote atomization of fuel before air-fuel mixture in the inlet port. In order to achieve its goal, the glow plug is to evaluate the feasibility of for the early fuel evaporator and the spray behavior characteristics of gasoline, injected on the surface of glow plug with room temperature(2$0^{\circ}C$) and high temperature(25$0^{\circ}C$) is to examine. Particle motion analysis system(PMAS) was used to measure the SMD and the dropsize distribution of impinging spray and free spray. The results of this experiment, evaporation rate of impinging spray was higher than that of free spray, and the higher evaporation rate win, the smaller peak dropsize was. Especially, during early spray SMD of impinging spray was still smaller than that of fee spray.

  • PDF

Study of Spray Droplet/Wall Interaction (분무액적과 벽의 상호작용에 대한 연구)

  • 양희천;유홍선;정연태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.86-100
    • /
    • 1998
  • The impingement of the fuel spray on the wall within the combustion chamber in compact high-pressure injection engines and on the intake port wall in port-fuel-inje- ction type engines is unavoidable. It is important to understand the characteristics of impinging spray because it influences on the rate of fuel evaporation and droplet distrib- ution etc. In this study, the numerical study for the characteristics of spray/wall interaction is performed to test the applicability and reliability of spray/wall impingement models. The impingement models used are stick model, reflect model, jet model and Watkins and Park's model. The head of wall-jet eminating radilly outward from the spray impingement site contains a vortex. Small droplets are deflected away from the wall by the stagnation flow field and the gas wall-jet flow. While the larger droplets with correspondingly higher momentum are impinged on the wall surface and them are moved along the wall and are rolled up by wall-jet vortex. Using the Watkins and Park's model the predicted results show the most reasonable trend. The rate of increase of spread and the height of the developing wall-spray is predicted to decrease with increased ambient pressure(gas density).

  • PDF

Preparation of Green-Light Emitting BAM:Mn Phosphor Particles by High Temperature Spray Pyrolysis (고온 분무열분해 공정에 의한 녹색 발광의 BAM:Mn 형광체 합성)

  • Ju Seo Hee;Koo Hye Young;Kim Do Youp;Kang Yun Chan
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.496-502
    • /
    • 2005
  • Green-light emitting $BaMgAl_{10}O_{19}:Mn^{2+}$ (BAM:Mn) phosphor particles were prepared by spray Pyrolysis. The effect of reactor temperature and flow rate of carrier gas in the spray Pyrolysis on the morphology, crystallinity and photoluminescence characteristics under vacuum ultraviolet were investigated. The morphology of the as-Prepared Particles obtained by spray Pyrolysis had spherical shape and non-aggregation characteristics regardless of the reactor temperature. The spherical shape of the as-prepared Particles obtained by spray pyrolysis at low temperature disappeared after Post-treatment. On the other hand the as-Prepared Particles obtained by spray Pyrolysis at $1600^{\circ}C$ maintained spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ for 3 h under reducing atmosphere. The BAM:Mn Phosphor Particles Prepared by spray Pyrolysis at different reactor temperatures had pure crystal structure and high photoluminescence intensities under vacuum ultraviolet after post-treatment. BAM:Mn phosphor particles prepared by spray Pyrolysis at low How rate of carrier gas had complete spherical shape and filed morphology and high photoluminescence intensity after post-treatment under reducing atmosphere.

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

Spray and Combustion Characteristics of DME and Diesel Fuel in a Common-Rail Diesel Engine (커먼레일 디젤엔진의 DME와 디젤연료의 분무 및 연소 특성)

  • Kim, Myung-Yoon;Ha, Sung-Yong;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl ether (DME) as an alternative fuel for compression ignition engine was investigated by measuring spray development processes, injection rate profiles, engine performance, and exhaust emission characteristics. The results of DME fueled engine were compared with those obtained by fueled with diesel. The experimental results showed that DME has approximately 0.03ms shorter injection delay and higher maximum injection rate than those of diesel fuel at a constant injection pressure of 50MPa. The spray visualization indicates that DME has shorter spray tip penetration due to its low density and faster evaporation. The combustion characteristics of DME operated engine provided faster ignition delay and three times shorter combustion duration. It is believed that the better evaporation and atomization characteristic of DME contributes the faster combustion. At all operating condition, soot emission was not detected due to the clean combustion of DME.

  • PDF

The Influence of Fuel Spray Characteristics on the Engine Performance and Emission in the Direct Injection Type Diesel Engine

  • Bakar Rosli Abu;Lee Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.43-50
    • /
    • 1997
  • The purpose of this investigation is to carry out, the influence factor on the fuel spray characteristics for improve the engine combustion performance and exhaust omission in direct injection type diesel engine. The fuel properties, fuel spray structure and the shape or the piston surface of diesel engine play an important role of engine combustion process and exhaust emission. In order to obtain the effect of using auxiliary chamber and emulsified fuel on the fuel spray characteristics the experiment un conduct with single cylinder direct injection type diesel engine to examine the engine performance and gas emission. The results of this investigation showed that the increase auxiliary chamber volume and emulsified fuel give an effect on the fuel spray characteristics by reduced the concentration of nitric oxide emission in the combustion chamber. Also it can improve the combustion characteristics such as cylinder pressure, rate of pressure rise and rate of heat release.

  • PDF

Optimization of the Plasma Spray Coating Parameters of Ni-5%Al Alloy Powder Using the Taguchi Experimental Method (다꾸찌방법에 의한 Ni-5%Al 합금 분말의 플라즈마 용사코팅 조건의 최적화)

  • 이형근
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.120-126
    • /
    • 2002
  • Ni-5%Al alloy powder is widely used as the bond coating powder to improve the adhesive strength between the substrate and coating. The important properties in the bond coating are the deposition efficiency and surface roughness. In this study, it was tried to optimize the plasma spray parameters to maximize the deposition efficiency and surface roughness. In the first step, spray current and hydrogen gas flow rate were optimized in order to increase the deposition efficiency. In the next step, the seven plasma spray variables were selected and optimized to improve both the deposition efficiency and surface roughness using the Taguchi experimental method. By these optimization, the deposition efficiency was improved from about 10 % at the frist time to 51.2 % by the optimization of spray current and hydrogen gas flow rate and finally to 65.2 % by the Taguchi experimental method. The average surface roughness was increased from about $12.9\mu\textrm{m}$ to $15.4\mu\textrm{m}$.

OH-and CH-Radical Chemiluminescence Characteristics in the Spray Combustion of Ultransonically Atomized Kerosene (초음파에 의해 무화된 케로신 분무연소에서의 OH 라디칼 및 CH 라디칼 자발광 특성)

  • Kim, Min Cheol;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.72-79
    • /
    • 2018
  • An experimental study was performed to investigate the chemiluminescence characteristics in the spray combustion of ultransonically atomized kerosene. The radical intensity of the spray flame was measured using an ICCD camera and the amount of fuel consumed was obtained by a precise flow-rate measurement technique during combustion. Fuel consumption increased linearly with the increase in carrier-gas flow rate, and typical group combustion, which is a characteristic of spray combustion, was observed. It was found from the analysis of chemiluminescence that the maximum emission intensities of OH and CH radicals decrease, and they move downstream resulting in the increase in a vivid reaction zone as the spray flow rate increases.

A Survey on the Damage done to the Farmers by Agrochemicals in a Rural Area of Korea (일부(一部) 농촌지역(農村地域)에서의 농약(農藥)에 의한 인체(人體)의 피해상황(被害狀況)에 관(關)한 조사연구(調査硏究))

  • Lim, Hyun-SuI
    • Journal of Preventive Medicine and Public Health
    • /
    • v.15 no.1
    • /
    • pp.205-211
    • /
    • 1982
  • This survey was conducted to find out demage done to the farmers by Agrochemicals in a rural area of Korea from January to October, 1980. Choon Sung Gun, Kang Won Province was the survey area and the 412 males were surveyed among all those that have sprayed agrochemicals during 10 Months in 1980. Obtained results and findings from this survey are summarized as follows; 1. The total spray days of 413 males were 3,114 days and avarage spray days per person were 7.54 days. Also avarage spray hours per person were 4.7 hours. 2. The incidence rate per 100 persons of self-recognized skin manifestation was 12.6 persons and incidence rate per spray day was 2.7 percent. The incidence rate per 100 persons of self-recognized intoxication was 23.0 persons and incidence rate per spray day was 3.6 percent. 3. In cases where mask was not used, when it was syrayed in hot weather, when stronger solution was used, the results were higher percentage in self-recognized intoxication (P<0.01). 4. The symptoms of self-recognized intoxication were headache (55.8%), dizziness (46.9%), nausea (17.7%), fatigue (17.0%), and vomiting (17.0%), 5. Number of intoxication per 100 used standardized unit by agrochemicals was parathion (93.8 spells), sumithion (91.8 spells) and folithion (66.7 spells). 6. Treatment was done by health facility utilization (27 cases), visits to drug store (13 cases) and visits to health center (7 cases).

  • PDF