• Title/Summary/Keyword: splitting test

Search Result 301, Processing Time 0.023 seconds

Effect of Aspect Ratio in Direct Tensile Strength of Concrete (콘크리트 직접인장강도의 세장비 효과)

  • Hong, Geon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • Although concrete members are not normally designed to resist direct tension, the knowledge of tensile strength is of value in estimating the cracking load. In general, there are three types of test method for tensile strength ; direct tension test, flexural tension test, and splitting tension test. Though direct tensile strength represents the real tensile strength of concrete, direct tension tests are seldom carried out, mainly because it is very difficult to applicate a pure tension force. The purpose of this paper is to investigate the test methods, effect of aspect ratio, and the size effect on the direct tensile strength. Direct tension test, using bonded end plates, follows RILEM and U.S.Bureau of Reclamation. And other test methods follow ASTM provisions. Four kinds of aspect ratio and two kinds of size effect are tested. Same variables are tested by direct tension test and splitting tension test for comparison between the two test methods. Test results show that direct tensile strength of concrete is more affected by aspect ratio and size than other kinds of strength.

Investigations on the tensile strength of high-performance fiber reinforced concrete using statistical methods

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.389-400
    • /
    • 2006
  • This paper presents the investigations towards developing a better understanding on the contribution of steel fibers on the tensile strength of high-performance fiber reinforced concrete (HPFRC). An extensive experimentation was carried out with w/cm ratios ranging from 0.25 to 0.40 and fiber content ranging from zero to 1.5 percent with an aspect ratio of 80. For 32 concrete mixes, flexural and splitting tensile strengths were determined at 28 days. The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Based on the test results, mathematical models were developed using statistical methods to predict 28-day flexural and splitting tensile strengths of HPFRC for a wide range of w/cm ratios. The expressions, being developed with strength ratios and not with absolute values of strengths and are applicable to wide range of w/cm ratio and different sizes/shapes of specimens. Relationship between flexural and splitting tensile strengths has been developed using regression analysis and absolute variation of strength values obtained was within 3.85 percent. To examine the validity of the proposed model, the experimental results of previous researchers were compared with the values predicted by the model.

Experimental Study for Tensile Softening Response of Plain Concrete (무근 콘크리트 인장연화응답의 실험적 연구)

  • 이상근;강태경;송영철;권용길;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.423-426
    • /
    • 2001
  • In this paper a large scale direct tension test of plain concrete is represented. Two independently controlled actuators were used to ensure a homogeneous tensile field and to avoid secondary flexural stresses. Fracture energies evaluated by a classical prediction equation and this test are compared. The result indicated that the classical prediction equation is not adequate to predict the fracture energy of large sized specimens. From this test, it was determined that the fracture energy obtained from large scale direct tension tests is significantly higher than the one obtained in wedge splitting tests on laboratory sized specimens. But the tensile strength was about half the value determined from splitting tensile strength test with cylindrical specimens.

  • PDF

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

Tensile Strength Characteristics of Cement Paste Mixed with Fibers (섬유가 혼합된 시멘트 페이스트의 인장강도 특성에 관한 연구)

  • Park, Sung-Sik;Hou, Yaolong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.5-16
    • /
    • 2015
  • The characteristics of tensile strength of fiber-reinforced grouting (cement paste) injected into rocks or soils were studied. A tensile strength of such materials utilized in civil engineering has been commonly tested by an indirect splitting tensile test (Brazilian test). In this study, a direct tensile testing method was developed with built-in cylinder inside a cylindrical specimen with 15 cm in diameter and 30 cm in height. The testing specimen was prepared with 0%, 0.5%, or 1% (by weight) of a PVA or steel fiber reinforced mortar. A specimen with 5 cm in diameter and 10 cm in height was also prepared and tested for the splitting tensile test. Each specimen was air cured for 7 days or 28 days before testing. The tensile strength of built-in cylinder test showed 96%-290% higher than that of splitting tensile test. The 3D finite element analyses on these tensile tests showed that the tensile strength from built-in cylinder test had was 3 times higher than that of splitting tensile test. It is similar to experimental result. As an amount of fiber increased from 0% to 1%, its tensile strength increased by 119%-190% or 23%-131% for 7 days or 28 days-cured specimens, respectively. As a curing period increased from 7 days to 28 days, its strength decreased. Most specimens reinforced with PVA fiber showed tensile strength 14%-38% higher than that of steel fiber reinforced specimens.

Structural Behavior of Sawdust-Mixing Concrete (폐톱밥 혼입 콘크리트의 구조거동에 관한 실험적 연구)

  • Hong, Seung-Ryul;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.126-133
    • /
    • 2005
  • Behavior of saw-dust concrete has not studied because many people have thought that saw-dust concrete cannot be applicable for structural member, up to now. This study is to findout how much the concrete can be structurally applicated. 5mm grid sieve was used to select satisfactory sawdust for better concrete quality. Test molds size of ${\phi}10{\times}20cm$ long were made of normal without sawdust, 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6%, 1.8% 2.0%, for making concrete strengh of 180kg, 210kg, 240kg, 270kg which they are normally used in practice presently. A various strengths tests such as compressive splitting tensile, flexible strength behavior of structural member named beam using size of $20{\times}30{\times}120cm$ have been done for the structural aspects. Tensile strength shows that it can be more affected than higher strength of it.

Strength and Modulus Relationship of Concrete for Rigid Pavement (포장용 콘크리트의 강도 및 탄성계수 상관관계식)

  • Yang, Sung-Chul;Park, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.205-213
    • /
    • 2007
  • Strength relationships are presented through experimental data from the concrete strength tests in this study. Various strength tests such as the compressive, flexural, and splitting tensile strength and the modulus of elasticity are included. An experimental work was performed to determine the various strength characteristics for various mix designs. Three different coarse aggregates such as granite, limestone, sandstone were used and included were fine aggregates such as natural sand, washed sand and crushed sand. Also included was cement amount as experimental variable. It was confirmed that each strength value with respect to curing time is to follow a typical strength development curve. With this somewhat reliable test results various strength relationships such as flexural strength-compressive strength, splitting tensile strength-compressive strength, modulus of elasticity-compressive strength, splitting tensile strength-flexural strength were analyzed through statistics. Experimental data were well fitted to the 0.5-power relationship of flexural strength and compressive strength which has been commonly accepted. The splitting tensile strength is expected to be best in the linear relationship from the flexural strength data. Finally splitting tensile strength was found to be proportional to the 0.87 power of the cylindrical compressive strength.

  • PDF

Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method (풍상차분법을 이용한 압축기 익렬유동 해석)

  • 권창오;송동주;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.653-661
    • /
    • 1994
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 supersonic/transonic compressor cascade flow. H-type grid was chosen for its simplicity in applying cyclic tridiagonal matrix algorithm along with conventional slip/no-slip boundary conditions. The thin-layer algebraic model of Baldwin-Lomax was employed for the calculation of turbulent flows. The test case inlet Mach No. was 1.612 and inlet/exit pressure ratio($P_2/P_1$) was 2.15. The results were compared with experimental results from current method were compared well in suction surface with the experiments and other computational results; however, not well in pressure surface. It might be due to the complex flowfields such as shock/boundary layer interaction, turbulence, and flow separation, etc. In the future, a proper turbulence modelling and adaptive grid system will be studied to improve the solution quality.

Fracture Toughnesses of Mortar and Concrete Through the Splitting Tensile Tests with Various Sizes of Specimens (크기가 다른 원형공시체의 할렬인장 실험을 통한 모르타르와 콘크리트의 파괴인성연구)

  • 김진근;구헌상;임선택
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.89-95
    • /
    • 1990
  • Possibility for the evaluation of fracture properties of mortar and concrete by splitting tensile test was stud¬ied. Splitting tensile tests were conducted to obtain the fracture loads for several sizes of cylindrical specimens of mortar and concrete with initial notch. From the results, fracture energy and fracture toughness by SEL were obtained and compared with the values by Rooke and Cartwright, and r.E.Moo The values by SEL method converged effectively. SEL method was shown to be a good method to obtain fracture properties of mortar and concrete.

Mechanical properties of natural fiber-reinforced normal strength and high-fluidity concretes

  • Kim, Joo-Seok;Lee, Hyoung-Ju;Choi, Yeol
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.531-539
    • /
    • 2013
  • An experimental investigation of mechanical properties of jute fiber-reinforced concrete (JFRC) has been reported for making a suitable construction material in terms of fiber reinforcement. Two jute fiber reinforced concretes, called jute fiber reinforced normal strength concrete (JFRNSC) and jute fiber-reinforced high-fluidity concrete (JFRHFC), were tested in compression, flexure and splitting tension. Compressive, flexural and splitting tensile strengths of specimens were investigated to four levels of jute fiber contents by volume fraction. From the test results, Jute fiber can be successfully used for normal strength concrete (NSC) and high-fluidity concrete (HFC). Particularly, HFC with jute fibers shows relatively higher improvement of strength property than that of normal strength concrete.