• Title/Summary/Keyword: splitting cracks

Search Result 60, Processing Time 0.02 seconds

Mechanical properties of pervious concrete with recycled aggregate

  • Zhu, Xiangyi;Chen, Xudong;Shen, Nan;Tian, Huaxuan;Fan, Xiangqian;Lu, Jun
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.623-635
    • /
    • 2018
  • In order to research the influence of different recycled aggregate contents on the mechanical properties of pervious concrete, the experimental study and numerical simulation analysis of the mechanical properties of pervious concrete with five kinds of recycled aggregates contents (0%, 25%, 50%, 75% and 100%) are carried out in this paper. The experimental test were first performed on concrete specimens of different sizes in order to determine the influence of recycled aggregate on the compressive strength and splitting tensile strength, direct tension strength and bending strength. Then, the development of the internal cracks of pervious concrete under different working conditions is studied more intuitively by $PFC^{3D}$. The experimental results show that the concrete compressive strength, tensile strength and bending strength decrease with the increase of the recycled aggregate contents. This trend of reduction is not only related to the brittleness of recycled aggregate concrete, but also to the weak viscosity of recycled aggregate and cement paste. It is found that the fracture surface of pervious concrete with recycled aggregate is smoother than that of natural aggregate pervious concrete by $PFC^{3D}$, which means that the bridging effect is weakened in the stress transfer between the left and right sides of the crack. Through the analysis of the development of the internal cracks, the recycled aggregate concrete generated more cracks than the natural aggregate concrete, which means that the recycled aggregate concrete is easier to form a coalescence fracture surface and eventually break.

Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression

  • Jin, Yuhao;Han, Lijun;Meng, Qingbin;Ma, Dan;Wen, Shengyong;Wang, Shuai
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.273-284
    • /
    • 2018
  • A detailed understanding of the mechanical behaviors for crushed coal rocks after grouting is a key for construction in the broken zones of mining engineering. In this research, experiments of grouting into the crushed coal rock using independently developed test equipment for solving the problem of sampling of crushed coal rocks have been carried out. The application of uniaxial compression was used to approximately simulate the ground stress in real engineering. In combination with the analysis of crack evolution and failure modes for the grouted specimens, the influences of different crushed degrees of coal rock (CDCR) and solidified grout strength (SGS) on the mechanical behavior of grouted specimens under uniaxial compression were investigated. The research demonstrated that first, the UCS of grouted specimens decreased with the decrease in the CDCR at constant SGS (except for the SGS of 12.3 MPa). However, the UCS of grouted specimens for constant CDCR increased when the SGS increased; optimum solidification strengths for grouts between 19.3 and 23.0 MPa were obtained. The elastic moduli of the grouted specimens with different CDCR generally increased with increasing SGS, and the peak axial strain showed a slightly nonlinear decrease with increasing SGS. The supporting effect of the skeleton structure produced by the solidified grouts was increasingly obvious with increasing CDCR and SGS. The possible evolution of internal cracks for the grouted specimens was classified into three stages: (1) cracks initiating along the interfaces between the coal blocks and solidified grouts; (2) cracks initiating and propagating in coal blocks; and (3) cracks continually propagating successively in the interfaces, the coal blocks, and the solidified grouts near the coal blocks. Finally, after the propagation and coalescence of internal cracks through the entire specimens, there were two main failure modes for the failed grouted specimens. These modes included the inclined shear failure occurring in the more crushed coal rock and the splitting failure occurring in the less crushed coal rock. Both modes were different from the single failure mode along the fissure for the fractured coal rock after grouting solidification. However, compared to the brittle failure of intact coal rock, grouting into the different crushed degree coal rocks resulted in ductile deformation after the peak strength for the grouted specimens was attained.

Signal Characteristics of Fiber Brags Grating due to Internal Strain Gradient (광섬유 브래그 격자의 내부 변형률 구배로 인한 신호 특성)

  • 강동훈;김대현;홍창선;김천곤
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.32-36
    • /
    • 2002
  • Recently, the applications of composite materials become broader to civil engineering as well as mechanics and aerospace engineering. Cracks on the civil structures like bridges can cause stress concentration, which induces Peak splitting of fiber Bragg grating sensor and it makes strain measurements difficult. In this study, 4-point bending test of concrete beam with initial crack reinforced by composite patch was conducted in order to verify the effects of the stress concentration on the peak signal of FBG sensor and a novel method for signal maintenance.

Numerical Fracture analysis of prestressed concrete beams

  • Rabczuk, Timon;Zi, Goangseup
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • Fracture of prestressed concrete beams is studied with a novel and robust three-dimensional meshfree method. The meshfree method describes the crack as a set of cohesive crack segments and avoids the representation of the crack surface. It is ideally suited for a large number of cracks. The crack is modeled by splitting particles into two particles on opposite sides of the crack segment and the shape functions of neighboring particles are modified in a way the discontinuous displacement field is captured appropriately. A simple, robust and efficient way to determine, on which side adjacent particles of the corresponding crack segment lies, is proposed. We will show that the method does not show any "mesh" orientation bias and captures complicated failure patterns of experimental data well.

An Experimental Study on the Structural Behavior of Reinforced Concrete Continuous Deep Beams Using Welded Deformed Wire Fabric as Shear Reinforcements (이형 용접철망을 전단철근으로 사용한 철근콘크리트 연속 깊은 보의 구조적 거동에 대한 실험적 연구)

  • Yang Keun-Hyeok;Chung Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.95-98
    • /
    • 2005
  • The objective of this experimental study was to understand the structural behavior of reinforced concrete continuous deep beams with welded deformed wire fabric(WWF) as shear reinforcement. The structural behavior of deep beams reinforced with WWF was compared with that of deep beams reinforced with orthogonal shear reinforcement which had standard anchorage corresponding to ACI 318-02. Test results showed that the load transferring capacity and the control of splitting cracks in the strut of WWF were almost as effective as those of orthogonal shear reinforcement with standard anchorage.

  • PDF

Experimental and analytical investigation of the shear behavior of strain hardening cementitious composites

  • Georgiou, Antroula V.;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • The mechanical behavior of Fiber Reinforced Cementitious Composites (FRCC) under direct shear is studied through experiment and analytical simulation. The cementitious composite considered contains 55% replacement of cement with fly ash and 2% (volume ratio) of short discontinuous synthetic fibers (in the form of mass reinforcement, comprising PVA - Polyvinyl Alcohol fibers). This class of cementitious materials exhibits ductility under tension with the formation of multiple fine cracks and significant delay of crack stabilization (i.e., localization of cracking at a single location). One of the behavioral parameters that concern structural design is the shear strength of this new type of fiber reinforced composites. This aspect was studied in the present work with the use of Push-off tests. The shear strength is then compared to the materials' tensile and splitting strength values.

Compression and Tensile Characteristics of Lightweight Air-Trapped Soil (경량기포토의 압축 및 인장 특성)

  • Lee, Young-Jun;Hwang, Woong-Ki;Yoon, Sung-Kyu;Kim, Jong-Sung;Choi, Dae-Kyung;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.631-642
    • /
    • 2010
  • This study is experimentally investigated for the characteristics of compression and tensile of lightweight air-trapped soils with uniform quality. Previously, EPS blocks are often used as lightweight embankment, but many problems such as the level difference and cracks caused by plastic(creep) deformation occurred in the EPS blocks. So, a new material development is urgent. By means of alternatives, lightweight air-mixed soil using in-situ soils has been developed and applied to fields. In comparison with EPS block, lightweight air-mixed soil have less creep deformation in long-time, but the strength characteristics of them are different depending on soils where they are obtained. Therefore, the quality management of them is very difficult. In this study, therefore, characteristics of lightweight air-trapped soil samples are investigated. To do this, the lightweight air-trapped soils are prepared using a manufactured sand with uniform quality. To found out the compression and tensile characteristics of lightweight air-tapped soils, unconfined compression test and splitting tensile test are conducted on the specimens prepared with different unit weight, cement-sand ratio and air-pore.

  • PDF

Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus

  • Komurlu, Eren;Kesimal, Ayhan;Demir, Serhat
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.775-791
    • /
    • 2016
  • The indirect tensile strengths (ITSs) of different cemented paste backfill mixes with different curing times were determined by considering crack initiation and fracture toughness concepts under different loading conditions of steel loading arcs with various contact angles, flat platens and the standard Brazilian test jaw. Because contact area of the ITS test discs developes rapidly and varies in accordance with the deformability, ITSs of curing materials were not found convenient to determine under the loading apparatus with indefinite contact angle. ITS values increasing with an increase in contact angle can be measured to be excessively high because of the high contact angles resulted from the deformable characteristics of the soft paste backfill materials. As a result of the change of deformation characteristics with the change of curing time, discs have different contact conditions causing an important disadvantage to reflect the strength change due to the curing reactions. In addition to the experimental study, finite element analyses were performed on several types of disc models under various loading conditions. As a result, a comparison between all loading conditions was made to determine the best ITSs of the cemented paste backfill materials. Both experimental and numerical analyses concluded that loading arcs with definite contact angles gives better results than those obtained with the other loading apparatus without a definite contact angle. Loading arcs with the contact angle of $15^{\circ}$ was found the most convenient loading apparatus for the typical cemented paste backfill materials, although it should be used carefully considering the failure cracks for a valid test.

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF

Compression and Tensile Characteristics of Lightweight Air-Trapped Soil (경량기포토의 압축 및 인장 특성)

  • Lee, Young-Jun;Kim, Sung-Won;Park, Lee-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.59-69
    • /
    • 2010
  • This study is experimentally investigated for characteristics of lightweight air-trapped soils with uniform quality. Previously, EPS (Expanded PolyStyrene) blocks are often used as lightweight embankment, but many problems such as the level difference and cracks were caused by plastic (creep) deformation. So, a new material development is urgent. By means of alternatives, lightweight air-mixed soil using in-situ soils has been developed and applied to fields. In comparison with EPS block, lightweight air-mixed soil has less plastic (creep) deformation in long period, but the strength characteristics are different according to the soils where they are obtained. Therefore, the quality management of lightweight air-mixed soil is very difficult. Therefore in this study, characteristics of lightweight air-trapped soil using a manufactured sand with uniform quality are investigated. To found out the compression and tensile characteristics of lightweight air-tapped soils, unconfined compression test and splitting tensile test are conducted on the specimens prepared with different unit weight, cement-sand ratio and air-pore.