• Title/Summary/Keyword: split-window method

Search Result 20, Processing Time 0.039 seconds

Improvement of COMS land surface temperature retrieval algorithm by considering diurnal variation of air temperature (기온의 일 변동을 고려한 COMS 지표면온도 산출 알고리즘 개선)

  • Choi, Youn-Young;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.435-452
    • /
    • 2016
  • Land Surface Temperature (LST) has been operationally retrieved from the Communication, Ocean, and Meteorological Satellite (COMS) data by the spilt-window method (CSW_v2.0) developed by Cho et al. (2015). Although the CSW_v2.0 retrieved the LST with a reasonable quality compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, it showed a relatively poor performance for the strong inversion and lapse rate conditions. To solve this problem, the LST retrieval algorithm (CSW_v2.0) was updated using the simulation results of radiative transfer model (MODTRAN 4.0) by considering the diurnal variations of air temperature. In general, the upgraded version, CSW_v3.0 showed a similar correlation coefficient between the prescribed LSTs and retrieved LSTs (0.99), the relatively smaller bias (from -0.03 K to-0.012 K) and the Root Mean Square Error (RMSE) (from 1.39 K to 1.138 K). Particularly, CSW_v3.0 improved the systematic problems of CSW_v2.0 that were encountered when temperature differences between LST and air temperature are very large and/or small (inversion layers and superadiabatic lapse rates), and when the brightness temperature differences and surface emissivity differences were large. The bias and RMSE of CSW_v2.0 were reduced by 10-30% in CSW_v3.0. The indirect validation results using the MODIS LST data showed that CSW_3.0 improved the retrieval accuracy of LST in terms of bias (from -0.629 K to -0.049 K) and RMSE (from 2.537 K to 2.502 K) compared to the CSW_v2.0.

Estimation of the Temporal and Spatial Variation of Surface Temperature Distribution in the Korean Peninsula using NOAA/AVHRR Data (NOAA/AVHRR 위성자료를 이용한 한반도 표면온도의 시공간적 변동 추정)

  • Suh, Young-Sang;Lee, Gi-Chul;Lee, Na-Kyung;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.150-160
    • /
    • 2005
  • In this study, the spatiotemporal surface temperature changes were analyzed in the Korean peninsula. The surface temperature variation was estimated using the split window method and NOAA/AVHRR data in 1991, 1995 and 2000. The ranges of differences in temperature between day time and night time were $3-15^{\circ}C$ around the peninsula. The differences in seasonal variations and yearly fluctuations in big cities were lower than those in rural areas and showed clearly the effects of the urbanization. The characteristics of urban heat affects were further determined based on the day and night time temperature comparison on Busan metropolitan area between these periods. Finally, the future use of this technology was suggested for the urban environmental planning.

  • PDF

Merge and Split of Players under MeanShift Tracking in Baseball Videos (야구 비디오에 대한 민시프트 추적 하에서 선수 병합 분리)

  • Choi, Hyeon-yeong;Hong, Sung-hwa;Ko, Jae-pil
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.119-125
    • /
    • 2017
  • In this paper, we propose a method that merges and splits players in the MeanShift tracking framework. The MeanShift tracking moves the center of tracking window to the maximum probability location given the target probability distribution. This tracking method has been widely used for real-time tracking problems because of its fast processing speed. However, it hardly handles occlusions in multiple object tracking systems. Occlusions can be usually solved by applying data association methods. In this paper, we propose a method that can be applied before data association methods. The proposed method automatically merges and splits the overlapped players by adjusting the each player's tracking map. We have compared the tracking performance of the MeanSfhit tracking algorithm and the proposed method.

Estimation of daily maximum air temperature using NOAA/AVHRR data (NOAA/AVHRR 자료를 이용한 일 최고기온 추정에 관한 연구)

  • 변민정;한영호;김영섭
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.291-296
    • /
    • 2003
  • This study estimated surface temperature by using split-window technique and NOAA/AVHRR data was used. For surface monitoring, cloud masking procedure was carried out using threshold algorithm. The daily maximum air temperature is estimated by multiple regression method using independent variables such as satellite-derived surface temperature, EDD, and latitude. When the EDD data added, the highest correlation shown. This indicates that EDD data is the necessary element for estimation of the daily maximum air temperature. We derived correlation and experience equation by three approaching method to estimate daily maximum air temperature. 1) non-considering landcover method as season, 2) considering landcover method as season, and 3) just method as landcover. The last approaching method shows the highest correlation. So cross-validation procedure was used in third method for validation of the estimated value. For all landcover type 5, the results using the cross-validation procedure show reasonable agreement with measured values(slope=0.97, intercept=-0.30, R$^2$=0.84, RMSE=4.24$^{\circ}C$). Also, for all landcover type 7, the results using the cross-validation procedure show reasonable agreement with measured values(slope=0.993, Intercept=0.062, R$^2$=0.84, RMSE=4.43$^{\circ}C$).

  • PDF

Efficient Fast Motion Estimation algorithm and Image Segmentation For Low-bit-rate Video Coding (저 전송율 비디오 부호화를 위한 효율적인 고속 움직임추정 알고리즘과 영상 분할기법)

  • 이병석;한수영;이동규;이두수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.211-214
    • /
    • 2001
  • This paper presents an efficient fast motion estimation algorithm and image segmentation method for low bit-rate coding. First, with region split information, the algorithm splits the image having homogeneous and semantic regions like face and semantic regions in image. Then, in these regions, We find the motion vector using adaptive search window adjustment. Additionally, with this new segment based fast motion estimation, we reduce blocking artifacts by intensively coding our interesting region(face or arm) in input image. The simulation results show the improvement in coding performance and image quality.

  • PDF

Video Segmentation Method using Improved Adaptive Threshold Algorithm and Post-processing (개선된 적응적 임계값 결정 알고리즘과 후처리 기법을 적용한 동영상 분할 방법)

  • Won, In-Su;Lee, Jun-Woo;Lim, Dae-Kyu;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.663-673
    • /
    • 2010
  • As a tool used for video maintenance, Video segmentation divides videos in hierarchical and structural manner. This technique can be considered as a core technique that can be applied commonly for various applications such as indexing, abstraction or retrieval. Conventional video segmentation used adaptive threshold to split video by calculating difference between consecutive frames and threshold value in window with fixed size. In this case, if the time difference between occurrences of cuts is less than the size of a window or there is much difference in neighbor feature, accurate detection is impossible. In this paper, Improved Adaptive threshold algorithm which enables determination of window size according to video format and reacts sensitively on change in neighbor feature is proposed to solve the problems above. Post-Processing method for decrement in error caused by camera flash and fast movement of large objects is applied. Evaluation result showed that there is 3.7% improvement in performance of detection compared to conventional method. In case of application of this method on modified video, the result showed 95.5% of reproducibility. Therefore, the proposed method is more accurated compared to conventional method and having reproducibility even in case of various modification of videos, it is applicable in various area as a video maintenance tool.

Air-conditioner cycle simulation using tube-by-tube method (관순법을 이용한 공조기 사이클 시뮬레이션)

  • Yoon, Baek;Park, Hyun-Yeon;Yoo, Guk-Chul;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.499-510
    • /
    • 1999
  • A computer program was developed for simulating performance(capacity, power consumption and etc.) of air-conditioners using compressor, fin-tube heat exchanger and capillary tube. The program consists of five modules, condenser, evaporator, compressor, capillary tube simulation modules and properties modules of refrigerant and moist air, The present program is focused on R22 only, however can be easily extended for other refrigerants such as R407C and R410A just by adding property modules. The compressor simulation module utilizes performance maps supplied by manufacturers-map-based model. The condenser and evaporator simulation modules are modeled using tube-by-tube method. Simulation results(capacity and power consumption) were compared with calorimeter test results of actual air-conditioners of window and split types, where more than 82% of the data lied within ${\pm}5$% of the predicted results.

  • PDF

Evaluation of Sensitivity and Retrieval Possibility of Land Surface Temperature in the Mid-infrared Wavelength through Radiative Transfer Simulation (복사전달모의를 통한 중적외 파장역의 민감도 분석 및 지표면온도 산출 가능성 평가)

  • Choi, Youn-Young;Suh, Myoung-Seok;Cha, DongHwan;Seo, DooChun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1423-1444
    • /
    • 2022
  • In this study, the sensitivity of the mid-infrared radiance to atmospheric and surface factors was analyzed using the radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN6)'s simulation data. The possibility of retrieving the land surface temperature (LST) using only the mid-infrared bands at night was evaluated. Based on the sensitivity results, the LST retrieval algorithm that reflects various factors for night was developed, and the level of the LST retrieval algorithm was evaluated using reference LST and observed LST. Sensitivity experiments were conducted on the atmospheric profiles, carbon dioxide, ozone, diurnal variation of LST, land surface emissivity (LSE), and satellite viewing zenith angle (VZA), which mainly affect satellite remote sensing. To evaluate the possibility of using split-window method, the mid-infrared wavelength was divided into two bands based on the transmissivity. Regardless of the band, the top of atmosphere (TOA) temperature is most affected by atmospheric profile, and is affected in order of LSE, diurnal variation of LST, and satellite VZA. In all experiments, band 1, which corresponds to the atmospheric window, has lower sensitivity, whereas band 2, which includes ozone and water vapor absorption, has higher sensitivity. The evaluation results for the LST retrieval algorithm using prescribed LST showed that the correlation coefficient (CC), the bias and the root mean squared error (RMSE) is 0.999, 0.023K and 0.437K, respectively. Also, the validation with 26 in-situ observation data in 2021 showed that the CC, bias and RMSE is 0.993, 1.875K and 2.079K, respectively. The results of this study suggest that the LST can be retrieved using different characteristics of the two bands of mid-infrared to the atmospheric and surface conditions at night. Therefore, it is necessary to retrieve the LST using satellite data equipped with sensors in the mid-infrared bands.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

A Basic Study for the Retrieval of Surface Temperature from Single Channel Middle-infrared Images (단일 밴드 중적외선 영상으로부터 표면온도 추정을 위한 기초연구)

  • Park, Wook;Lee, Yoon-Kyung;Won, Joong-Sun;Lee, Seung-Geun;Kim, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.189-194
    • /
    • 2008
  • Middle-infrared (MIR) spectral region between 3.0 and $5.0\;{\mu}m$ in wavelength is useful for observing high temperature events such as volcanic activities and forest fire. However, atmospheric effects and sun irradiance in day time has not been well studied for this MIR spectral band. The objectives of this basic study is to evaluate atmospheric effects and eventually to estimate surface temperature from a single channel MIR image, although a typical approach utilize split-window method using more than two channels. Several parameters are involved for the correction including various atmospheric data and sun-irradiance at the area of interest. To evaluate the effect of sun irradiance, MODIS MIR images acquired in day and night times were used for comparison. Atmospheric parameters were modeled by MODTRAN, and applied to a radiative transfer model for estimating the sea surface temperature. MODIS Sea Surface Temperature algorithm based upon multi-channel observation was performed in comparison with results from the radiative transfer model from a single channel. Temperature difference of the two methods was $0.89{\pm}0.54^{\circ}C$ and $1.25{\pm}0.41^{\circ}C$ from the day-time and night-time images, respectively. It is also shown that the emissivity effect has by more largely influenced on the estimated temperature than atmospheric effects. Although the test results encourage using a single channel MR observation, it must be noted that the results were obtained from water body not from land surface. Because emissivity greatly varies on land, it is very difficult to retrieval land surface temperature from a single channel MIR data.