DOI QR코드

DOI QR Code

Improvement of COMS land surface temperature retrieval algorithm by considering diurnal variation of air temperature

기온의 일 변동을 고려한 COMS 지표면온도 산출 알고리즘 개선

  • Choi, Youn-Young (Department of Atmospheric Science, Kongju National University) ;
  • Suh, Myoung-Seok (Department of Atmospheric Science, Kongju National University)
  • Received : 2016.09.06
  • Accepted : 2016.10.13
  • Published : 2016.10.31

Abstract

Land Surface Temperature (LST) has been operationally retrieved from the Communication, Ocean, and Meteorological Satellite (COMS) data by the spilt-window method (CSW_v2.0) developed by Cho et al. (2015). Although the CSW_v2.0 retrieved the LST with a reasonable quality compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, it showed a relatively poor performance for the strong inversion and lapse rate conditions. To solve this problem, the LST retrieval algorithm (CSW_v2.0) was updated using the simulation results of radiative transfer model (MODTRAN 4.0) by considering the diurnal variations of air temperature. In general, the upgraded version, CSW_v3.0 showed a similar correlation coefficient between the prescribed LSTs and retrieved LSTs (0.99), the relatively smaller bias (from -0.03 K to-0.012 K) and the Root Mean Square Error (RMSE) (from 1.39 K to 1.138 K). Particularly, CSW_v3.0 improved the systematic problems of CSW_v2.0 that were encountered when temperature differences between LST and air temperature are very large and/or small (inversion layers and superadiabatic lapse rates), and when the brightness temperature differences and surface emissivity differences were large. The bias and RMSE of CSW_v2.0 were reduced by 10-30% in CSW_v3.0. The indirect validation results using the MODIS LST data showed that CSW_3.0 improved the retrieval accuracy of LST in terms of bias (from -0.629 K to -0.049 K) and RMSE (from 2.537 K to 2.502 K) compared to the CSW_v2.0.

천리안(Communication, Ocean, and Meteorological Satellite) 위성자료로부터 Cho et al.(2015)에 의해 개발된 분리대기창법(split-window method: CSW_v2.0)을 적용하여 현업적으로 지표면온도를 산출하고 있다. CSW_v2.0으로부터 산출된 지표면온도는 MODIS 지표면온도와 비교하였을 때 적절한 수준의 정확도로 산출되었으나 역전층이나 기온감률이 클 때 상대적으로 오차가 크게 발생하였다. 이를 해결하기 위해 지표 경계층에서의 기온의 일변동을 복사전달모델에 처방하여 모의자료를 구축한 후 이를 이용하여 지표면온도 산출 알고리즘을 개선하였다(CSW_v3.0). CSW_v3.0에서는 복사전달모델에 처방된 지표면온도와 복사전달모델로부터 산출된 지표면온도간의 상관계수가 기존 알고리즘과 동일한 수준인 0.99 이상을 유지하면서 편의는 -0.03 K에서 -0.012 K, RMSE는 1.39 K에서 1.138 K로 감소하였다. CSW_v2.0에서 역전층이나 기온감률이 클 때, 휘도온도차와 방출율 차가 클 때 발생하는 계통적 오차를 개선된 알고리즘에서는 편의와 RMSE를 10-30% 감소시켜 상당 부분 개선하였다. CSW_v3.0으로부터 산출된 지표면온도와 MODIS 지표면온도와의 간접 검증에서는 상관계수가 0.986에서 0.985로 높은 상관성을 유지하면서 편의는 0.629 K에서 -0.049 K, RMSE는 2.537 K에서 2.502 K로 오차를 감소시켰다.

Keywords

References

  1. Becker, F., and Z.L. Li, 1990. Temperature-independent spectral indices in thermal infrared bands. Remote Sensing of Environment, 32(1): 17-33. https://doi.org/10.1016/0034-4257(90)90095-4
  2. Berk, A., G.P. Anderson, P.K. Acharya, J.H. Chetwynd, L.S. Bernstein, E. P. Shettle, M.W. Matthew, and S. M. Adler-Golden, 1999. MODTRAN 4 users manual, report. Air Force Research Laboratory Space Vehicles Directorate, Hascom AFB, Mass.
  3. Benali, A., A. Carvalho, J. Nunes, N. Carvalhais, and A. Santos, 2012. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124: 108-121. https://doi.org/10.1016/j.rse.2012.04.024
  4. Cho, A.-R., and M.-S. Suh, 2013b. Evaluation of land surface temperature operationally retrieved from Korean geostationary satellite(COMS) data. Remote Sensing, 5(8): 3951-3970. https://doi.org/10.3390/rs5083951
  5. Cho, A.-R., Y.-Y. Choi, and M.-S. Suh 2015. Improvements of a COMS land surface temperature retrieval algorithm based on the temperature lapse rate and water vapor/aerosol effect, Remote Sensing, 7(2): 1777-1797. https://doi.org/10.3390/rs70201777
  6. Choi, Y.-Y., M.-S. Suh, and K.-H. Park, 2014. Assessment of surface urban heat islands over three megacities in East Asia using land surface temperature data retrieved from COMS. Remote Sensing, 6(6): 5852-5867. https://doi.org/10.3390/rs6065852
  7. Coll, C., Z. Wan, and J.M. Galve, 2009. Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. Journal of Geophysical Research: Atmospheres, 114(D20).
  8. Dai, A., K.E. Trenberth, and T.R. Karl, 1999. Effect of clouds, soil, moisture, precipitation, and water vapor on diurnal temperature range. Journal of Climate, 12(8): 2451-2473. https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2
  9. Dash, P., 2005. Land surface temperature and emissivity retrieval from satellite measurements. FZKA, Available online: http://d-nb.info/97521960x/34/(accessed on 5 September 2016).
  10. Frey, C.M., C. Kuenzer, and S. Dech, 2012. Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005. International journal of remote sensing, 33(22): 7165-7183. https://doi.org/10.1080/01431161.2012.699693
  11. Gallo, K.P., D.R. Easterling and T.C. Peterson, 1996. The influence of land use/land cover on climatological values of the diurnal temperature range, Journal of climate, 9(11): 2941-2944. https://doi.org/10.1175/1520-0442(1996)009<2941:TIOLUC>2.0.CO;2
  12. Goita, K., A. Royer, and N. Bussieres, 1997. Characterization of land surface thermal structure from NOAA-AVHRR data over a northern ecosystem. Remote Sensing of Environment, 60(3): 282-298. https://doi.org/10.1016/S0034-4257(96)00211-8
  13. Gottsche, F.M., F.S. Olesen, I.F. Trigo, A. Bork-Unkelbach, and M. A. Martin, 2016. Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa. Remote Sensing, 8(5): 410. https://doi.org/10.3390/rs8050410
  14. Han, K.-S., A. Viau, and F. Anctil, 2004. An analysis of GOES and NOAA derived land surface temperatures estimated over a boreal forest. International Journal of Remote Sensing, 25(21): 4761-4780. https://doi.org/10.1080/01431160410001680446
  15. Inamdar, A.K., and A. French, 2009. Disaggregation of GOES land surface temperatures using surface emissivity. Geophysical Research Letters, 36(2): doi:10.1029/2008GL036544.
  16. Kerr, Y.H., J.P. Lagouarde, and J. Imbernon, 1992. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm. Remote Sensing of Environment, 41(2): 197-209. https://doi.org/10.1016/0034-4257(92)90078-X
  17. Kerr, Y.H., J.P. Lagouarde, F. Nerry, and C. Ottle, 2004. Land surface temperature retrieval techniques and applications. Thermal remote sensing in land surface processes, 33-109.
  18. Kustas, W., and J. Norman, 1996. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal, 41(4): 495-516. https://doi.org/10.1080/02626669609491522
  19. Li, Z.L., B.H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.F. Trigo, and J.A. Sobrino, 2013. Satellitederived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131: 14-37. https://doi.org/10.1016/j.rse.2012.12.008
  20. Liu, Y., Y. Yu, D. Sun, D. Tarpley, and L. Fang, 2013. Effect of different MODIS emissivity products on land-surface temperature retrieval from GOES series. IEEE Geoscience and Remote Sensing Letters, 10(3): 510-514. https://doi.org/10.1109/LGRS.2012.2211992
  21. Moran, M.S., and R.D. Jackson, 1991. Assessing the spatial distribution of evapotranspiration using remotely sensed inputs. Journal of Environmental Quality, 20(4): 725-737. https://doi.org/10.2134/jeq1991.00472425002000040003x
  22. Park, K.-H., and M.-S. Suh, 2014. Improvement of infrared channel emissivity data in COMS observation area from recent MODIS data(2009-2012), Korean Journal of Remote Sensing, 30(1): 109-126(in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.1.9
  23. Pinker, R.T., D. Sun, M.-P. Hung, C. Li, and J.B. Basara 2009. Evaluation of satellite estimates of land surface temperature from GEOS over the United States. Journal of Applied Meteorology and Climatology, 48(1): 167-180. https://doi.org/10.1175/2008JAMC1781.1
  24. Prata, A., J. Caselles, C. Coll, J.A. Sobrino, and C. Ottle, 1995. Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sensing Reviews, 12(3-4): 175-224. https://doi.org/10.1080/02757259509532285
  25. Prata, A., and J. Cechet, 1999. An assessment of the accuracy of land surface temperature determination from the GMS-5 VISSR. Remote Sensing of Environment, 67(1): 1-14. https://doi.org/10.1016/S0034-4257(98)00055-8
  26. Price, J.C., 1984. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. Journal of Geophysical Research: Atmospheres, 89(D5): 7231-7237. https://doi.org/10.1029/JD089iD05p07231
  27. Sobrino, J., and M. Romaguera, 2004. Land Surface temperature retrieval from MSG1-SEVIRI data. Remote Sensing of Environment, 92(2): 247-254. https://doi.org/10.1016/j.rse.2004.06.009
  28. Suh, M.-S., S.-H. Kim, and J.-H. Kang, 2008. A comparative study of algorithm for estimating land surface temperature for MODIS data. Korean Journal of Remote Sensing, 24(1): 65-78. https://doi.org/10.7780/kjrs.2008.24.1.65
  29. Suh M.-S., S.-K. Hong, and J.-H. Kang, 2009. Characteristics of seasonal mean diurnal temperature range and their causes over South Korea. Atmosphere, 19(2): 155-168.
  30. Sun, D., and R.T. Pinker, 2003. Estimation of land surface temperature from a Geostationary Operational Environmental Satellite(GOES-8). Journal of Geophysical Research: Atmospheres, 108(D11).
  31. Trigo, I.F., T.M. Isabel, O. Folke, and K. Ewa, 2008. An assessment of remotely sensed land surface temperature, Journal of Geophysical Research, 113(D17).
  32. Ulivieri, C., M. Castronuovo, R. Francioni, and A. Cardillo, 1994. A split window algorithm for estimating land surface temperature from satellites. Advances in Space Research, 14(3): 59-65. https://doi.org/10.1016/0273-1177(94)90193-7
  33. Valor, E., and V. Caselles, 1996. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote sensing of Environment, 57: 167-184. https://doi.org/10.1016/0034-4257(96)00039-9
  34. Wan, Z., and J. Dozier, 1996. A Generalized split-window algorithm for retrieving land-surface temperature measurement from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905. https://doi.org/10.1109/36.508406
  35. Xu, H., Y. Yu, D. Tarpley, F.M. Gottsche, and F.S. Olesen, 2014. Evaluation of GOES-R land surface temperature algorithm using SEVIRI satellite retrievals with in in situ measurements. IEEE Transactions on Geoscience and Remote Sensing, 52(7): 3812-3822. https://doi.org/10.1109/TGRS.2013.2276426

Cited by

  1. Development of Himawari-8/Advanced Himawari Imager (AHI) Land Surface Temperature Retrieval Algorithm vol.10, pp.12, 2016, https://doi.org/10.3390/rs10122013