• Title/Summary/Keyword: spline surface

Search Result 255, Processing Time 0.022 seconds

A Study on Development of an Algorithm for Vertex Creation to Define Ship Hull Forms (선체형상 정의를 위한 버텍스 산출 알고리즘 개발에 관한 연구)

  • Hyun-Kyoung Shin;Sang-Sung Shin;Kyu-Won Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.31-37
    • /
    • 1994
  • When a lot of input data are not distributed uniformly n a chord-span direction or when the given shape is complicated, it is very difficult to obtain an inverse matrix which represents the smooth Bi-cubic B-spline surface of the initial shape. To overcome this problem, we suggest image Surface Expansion Method(ISE Method) which is suggested for vertex creation of B-spline curves and surfaces. Its basic concept, convergency and verification are shown. Also B-spline curves and Surfaces represented by ISE Method were compared with those represented by the existing method which is based on the inverse matrix method, the pseudoinverse matrix method and the chord length approximation method for vertex yielding. Ship Hull Forms which have Knuckle, Bulbous Bow, Transom and Stern frame were represented by the ISE Method.

  • PDF

Representation of Sweep Surface in Bicubic Spline surface Form (쌍3차 스플라인곡면 식에 의한 이동곡면의 표현)

  • 전차수;조형래;박세형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1005-1012
    • /
    • 1995
  • This paper proposes a new approach for modeling sweep surfaces. The overall modeling procedure consists of following steps : (1)remeshing the section curves based on the curve lengths ; (2)remeshing the guide curve and the boundary curves based on a given sweeping rule ; (3)obtaining intermediate section curves at the remeshed points of the guide curve by blending the initial section curves ; (4)compensation of the intermediate section curves ; (5)interpolating the initial and intermediate curves using Hermite interpolant. The resulting sweep surface is expressed in a G$^{2}$ bicubic parametric spline surface.

Adaptive B-spline volume representation of measured BRDF data for photorealistic rendering

  • Park, Hyungjun;Lee, Joo-Haeng
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Measured bidirectional reflectance distribution function (BRDF) data have been used to represent complex interaction between lights and surface materials for photorealistic rendering. However, their massive size makes it hard to adopt them in practical rendering applications. In this paper, we propose an adaptive method for B-spline volume representation of measured BRDF data. It basically performs approximate B-spline volume lofting, which decomposes the problem into three sub-problems of multiple B-spline curve fitting along u-, v-, and w-parametric directions. Especially, it makes the efficient use of knots in the multiple B-spline curve fitting and thereby accomplishes adaptive knot placement along each parametric direction of a resulting B-spline volume. The proposed method is quite useful to realize efficient data reduction while smoothing out the noises and keeping the overall features of BRDF data well. By applying the B-spline volume models of real materials for rendering, we show that the B-spline volume models are effective in preserving the features of material appearance and are suitable for representing BRDF data.

T-spline FEA for Trimmed NURBS Surface (트림 NURBS 곡면의 T-스플라인 유한요소해석)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • In this present work, spline FEA for the trimmed NURBS surface of the 2D linear elasticity problem is presented. The main benefit of the proposed method is that no additional efforts for modeling of trimmed NURBS surfaces are needed and the information of the trimming curves and trimmed surfaces exported from the CAD system can be directly used for analysis. For this, trimmed elements are searched by using NURBS projection scheme. The integration of the trimmed elements is performed by using the NURBS-enhanced integration scheme. The formulation of constructing stiffness matrix of trimmed elements is presented. In this formulation, the information of the trimming curve is used for calculating the Jacobian as well as for obtaining integration points. The robustness and effectiveness of the proposed method are investigated through various numerical examples.

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.

A Unified Surface Modeling Technique Using a Bezier Curve Model (de Casteljau Algorithm) (베지에 곡선모델 (드 카스텔죠 알고리듬) 을 이용한 곡면 통합 모델링 기법)

  • Rhim, Joong-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.127-138
    • /
    • 1997
  • In this study, a new technique is presented, by which one can define ship hull form with full fairness from the input data of lines. For curve modeling, the de Casteljau Algorithm and Bezier control points are used to express free curves and to establish the unified curve modeling technique which enables one to convert non-uniform B-spline (NUB) curve or cubic spline curve into composite Bezier curves. For surface modeling, the mesh curve net which is required to define surface of ship hull form is interpolated by the method of the unified curve modeling, and the boundary curve segments of Gregory surface patches are generated by remeshing(rearranging) the given mesh curve net. From these boundary information, composite Gregory surfaces of good quality in fairness can be formulated.

  • PDF

B-spline Surface Reconstruction in Reverse Engineering by Segmentation of Measured Point Data (역공학에서의 측정점의 분할에 의한 B-spline 곡면의 재생성)

  • Hur, Sung-Min;Kim, Ho-Chan;Lee, Seok-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1961-1970
    • /
    • 2002
  • A laser scanner is widely used fur a device fur acquiring point data in reverse engineering. It is more efficient to generate a surface automatically from the line-typed data than scattered data of points clouds. In the case of a compound model, it is hard to represent all the scanned data into one surface maintaining its original line characteristics. In this paper, a method is presented to generate a surface by the segmentation of measured point data. After forming triangular net, the segmentation is done by the user input such as the angle between triangles, the number of facets to be considered as small segment, and the angle for combining small segment. B-spline fitting is implemented to the point data in each segment. The surface generation through segmentation shows a reliable result when it is applied to the models with curvature deviation regions. An useful algorithm for surface reconstruction is developed and verified by applying an practical model and shows a good tools fur reverse engineering in design modification.

Fast Evaluation of a dynamic B-spline Curve and Surface (동적인 B-spline 곡선과 곡면의 효율적인 평가방법)

  • Ryu Joonghyun;Kim Deok-Soo
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.461-466
    • /
    • 2002
  • In many applications of computer aided geometric design and computer graphics, B-spline is one of the most popular representation for curves and surfaces, and the evaluation of B-spline curves and surfaces is the most frequently used operation. For the evaluation and others, the power form representation of the curves and surfaces is preferred because it is possible to speed-up the operation using Horner's rule. In this paper, we present a new algorithm for the above-mentioned conversion focusing on a dynamic case. Experiment shows that the proposed algorithm significantly outperforms the conventional approach when one or more control points of a B-spline curve and surface are dynamically moving.

  • PDF

B-spline Volume BRDF Representation and Application in Physically-based Rendering (물리기반 렌더링에서의 비스플라인 볼륨 BRDF 표현과 응용)

  • Lee, Joo-Haeng;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.469-477
    • /
    • 2008
  • Physically-based rendering is an image synthesis technique based on simulation of physical interactions between light and surface materials. Since generated images are highly photorealistic, physically-based rendering has become an indispensable tool in advanced design visualization for manufacturing and architecture as well as in film VFX and animations. Especially, BRDF (bidirectional reflectance distribution function) is critical in realistic visualization of materials since it models how an incoming light is reflected on the surface in terms of intensity and outgoing angles. In this paper, we introduce techniques to represent BRDF as B-spline volumes and to utilize them in physically-based rendering. We show that B-spline volume BRDF (BVB) representation is suitable for measured BRDFs due to its compact size without quality loss in rendering. Moreover, various CAGD techniques can be applied to B-spline volume BRDFs for further controls such as refinement and blending.

Study for Forging of Spline with Upper Bound Method (상계법을 이용한 스플라인 단조에 관한 연구)

  • 조해용;최재찬;최종웅;민규식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.37-47
    • /
    • 1995
  • Forging of trapezoidal spline, serration and square spline with solid cylindrical billets and hollow one has been investigated by means of upper bound method. Kinematically admissible velocity fields for forging of splines have been proposed in this study. The half pitch of splines has been divided into deformation regons. The neutral surface is introduced into forging of splines with flat punch and, for each step, it is assumed as a circle with its radius rn upper bound solutions obtained obtained by proposed kinematically admissible velocity fields are useful to predict the loads for forging of splines.

  • PDF