• Title/Summary/Keyword: spline function

Search Result 248, Processing Time 0.026 seconds

Motion Planning for Mobile Robots Using a Spline Surface

  • Kato, Kiyotaka;Tanaka, Jyunichi;Tokunaga, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1054-1059
    • /
    • 2005
  • The artificial potential method uses a potential field to guide a robot from a start to a goal configuration respectively. The potential field consists of attractive potential used to pull a robot toward a goal and repulsive potential to keep it away from obstacles. However, there are two problems concerning local minimum and computational cost to be resolved in conventional artificial potential methods. This study proposes a method utilizing a spline surface that interpolates arbitrary boundaries and a domain reduction method that reduces the unnecessary area. The proposed spline surface interpolates arbitrary shaped boundaries and is used as an artificial potential to guide a robot for global motion planning of a mobile robot. A reduced domain process reduces the unnecessary domain. We apply a distance-weighted function as such a function, which blends distances from each boundary with a reduction in computational time compared with other analytical methods. As a result, this paper shows that an arbitrary boundary spline surface provides global planning and a domain reduction method reduces local minimum with quick operation.

  • PDF

Axisymmetric vibrations of layered cylindrical shells of variable thickness using spline function approximation

  • Viswanathan, K.K.;Kim, Kyung Su;Lee, Jang Hyun;Lee, Chang Hyun;Lee, Jae Beom
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.749-765
    • /
    • 2008
  • Free axisymmetric vibrations of layered cylindrical shells of variable thickness are studied using spline function approximation techniques. Three different types of thickness variations are considered namely linear, exponential and sinusoidal. The equations of axisymmetric motion of layered cylindrical shells, on the longitudinal and transverse displacement components are obtained using Love's first approximation theory. A system of coupled differential equations on displacement functions are obtained by assuming the displacements in a separable form. Then the displacements are approximated using Bickley-spline approximation. The vibrations of two-layered cylindrical shells, made up of several types of layered materials and different boundary conditions are considered. Parametric studies have been made on the variation of frequency parameter with respect to the relative layer thickness, length ratio and type of thickness variation parameter.

A Performance Comparison of Sampling Rate Conversion Algorithms for Audio Signal (오디오 신호를 위한 표본화율 변환 알고리듬 성능 비교)

  • Lee Yong-Hee;Kim Rin-Chul
    • Journal of Broadcast Engineering
    • /
    • v.9 no.4 s.25
    • /
    • pp.384-390
    • /
    • 2004
  • In this paper we compare the performance of 4 different algorithms for converting the sampling frequency of an audio from 44.1KHz to 48KHz. The algorithms considered here include the basic polyphase method. sine function based method. multi-stage method. and B-spline based method. For a fair comparison, the sampling rate converters using the 4 algorithms are redesigned under a high fidelity condition. Then, their H/W complexities are compared in terms of the computational complexity and the memory size. As a result, it is shown that the basic polyphase method and sine function based method outperform the other two in terms of the computational complexity, while the B-spline based method requires less memory than the others.

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

Genetic Algorithm based B-spline Fitting for Contour Extraction from a Sequence of Images (연속 영상에서의 경계추출을 위한 유전자 알고리즘 기반의 B-spline 적합)

  • Heo Hoon;Lee JeongHeon;Chae OkSam
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.357-365
    • /
    • 2005
  • We present a B-spline fitting method based on genetic algorithm for the extraction of object contours from the complex image sequence, where objects with similar shape and intensity are adjacent each other. The proposed algorithm solves common malfitting problem of the existing B-spline fitting methods including snakes. Classical snake algorithms have not been successful in such an image sequence due to the difficulty in initialization and existence of multiple extrema. We propose a B-spline fitting method using a genetic algorithm with a new initial population generation and fitting function, that are designed to take advantage of the contour of the previous slice. The test results show that the proposed method extracts contour of individual object successfully from the complex image sequence. We validate the algorithm by false-positive/negative errors and relative amounts of agreements.

Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam

  • Panchore, Vijay;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.765-773
    • /
    • 2017
  • The quadratic B-spline finite element method yields mass and stiffness matrices which are half the size of matrices obtained by the conventional finite element method. We solve the free vibration problem of a rotating Rayleigh beam using the quadratic B-spline finite element method. Rayleigh beam theory includes the rotary inertia effects in addition to the Euler-Bernoulli theory assumptions and presents a good mathematical model for rotating beams. Galerkin's approach is used to obtain the weak form which yields a system of symmetric matrices. Results obtained for the natural frequencies at different rotating speeds show an accurate match with the published results. A comparison with Euler-Bernoulli beam is done to decipher the variations in higher modes of the Rayleigh beam due to the slenderness ratio. The results are obtained for different values of non-uniform parameter ($\bar{n}$).

Web3D Tour Path Setting-Method Using Spline Curve (스플라인 곡선을 이용한 Web3D 투어패스 설정 기법)

  • Song, Teuk-Seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.544-547
    • /
    • 2008
  • Navigation in 3D virtual environment(VE) is very difficult because the virtual environment is lack information than real 3D world. So navigation is import research subject in 3D VE. In this paper, we study tour path setting method using spline curve. The spline curve is augmented polynomial function. So the curve is differentiable. In particular, since the curves which are order of 2 and 3 are second order differentiable those are sufficiently smooth for using the computer graphics and CAD system.

  • PDF

Design of Electrode Shape with B-Spline Curve Under Specified Field Condition (B-Spline곡선을 이용한 지정된 전계조건하의 전극형상 설계)

  • 김응식;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.964-975
    • /
    • 1990
  • This paper aims at the design of high voltage electrode contour under specified field condition. Defining the contour with B-Spline curve, the number of contour variables can be reduced and very smooth electrode can be obtained. For the analysis of the electric field, Surface Charge Method which has advantages in practical model has been used. As an initial contour, the rod-plane gap has been used since the difference between maximum and minimum field value is relatively large. Various field conditions including uniform field condition are given to the end of the rod electrode. Under uniform field condition, authors designed an electrode whose field-deviation was under 0.5%. Finally, the relation between the curvature and field of the electrode has been checked, which showed that B-Spline curve is appropriate for the shape function.

  • PDF

A B-spline based Branch & Bound Algorithm for Global Optimization (전역 최적화를 위한 B-스플라인 기반의 Branch & Bound알고리즘)

  • Park, Sang-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2010
  • This paper introduces a B-spline based branch & bound algorithm for global optimization. The branch & bound is a well-known algorithm paradigm for global optimization, of which key components are the subdivision scheme and the bound calculation scheme. For this, we consider the B-spline hypervolume to approximate an objective function defined in a design space. This model enables us to subdivide the design space, and to compute the upper & lower bound of each subspace where the bound calculation is based on the LHS sampling points. We also describe a search tree to represent the searching process for optimal solution, and explain iteration steps and some conditions necessary to carry out the algorithm. Finally, the performance of the proposed algorithm is examined on some test problems which would cover most difficulties faced in global optimization area. It shows that the proposed algorithm is complete algorithm not using heuristics, provides an approximate global solution within prescribed tolerances, and has the good possibility for large scale NP-hard optimization.

Boundary Integral Equation Method by Cubic Spline (Cubic Spline을 사용한 경계요소법)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1990
  • Dirichlet boundary value problems originated from unsteady deep water wave propagation are transformed to Boundary Intergral Equation Methods by use of a free surface Green's function and the integral equations are discretized by a cubic spline element method. In order to enhance the stability of the numerical model based on the derived Fredholm integral equation of 1 st kind, the method by Hsiao and MacCamy (1973) is employed. The numerical model is tested against exact solutions for two cases and the model shows very good accuracy.

  • PDF