• Title/Summary/Keyword: spline function

Search Result 248, Processing Time 0.021 seconds

Compensation of Geometric Error by the Correction of Control Surface (제어곡면 수정에 의한 기하오차 보정)

  • Ko, Tae-Jo;Park, Sang-Shin;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF

Development of a Motion Control Algorithm for the Automatic Operation System of Overhead Cranes (천장크레인의 무인운전 시스템을 위한 운동제어 알고리즘 개발)

  • Lee, Jong-Kyu;Park, Young-Jo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3160-3172
    • /
    • 1996
  • A search algorithm for the collision free, time optimal transport path of overhead cranes has been proposed in this paper. The map for the working environment of overhead cranes was constructed in the form of three dimensional grid. The obstacle occupied region and unoccupied region of the map has been represented using the octree model. The best-first search method with a suitable estimation function was applied to select the knot points on the collision free transport path to the octree model. The optimization technique, minimizing the travel time required for transporting objects to the goal while subjected to the dynamic constraints of the crane system, was developed to find the smooth time optimal path in the form of cubic spline functions which interpolate the selected knot points. Several simulation results showed that the selected estimation function worked effectively insearching the knot points on the collision free transport path and that the resulting transport path was time optimal path while satisfying the dynamic constraints of the crane system.

Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.269-284
    • /
    • 2016
  • Simplified techniques based on in situ testing methods are commonly used to assess seismic liquefaction potential. Many of these simplified methods were developed by analyzing liquefaction case histories from which the liquefaction boundary (limit state) separating two categories (the occurrence or non-occurrence of liquefaction) is determined. As the liquefaction classification problem is highly nonlinear in nature, it is difficult to develop a comprehensive model using conventional modeling techniques that take into consideration all the independent variables, such as the seismic and soil properties. In this study, a modification of the Multivariate Adaptive Regression Splines (MARS) approach based on Logistic Regression (LR) LR_MARS is used to evaluate seismic liquefaction potential based on actual field records. Three different LR_MARS models were used to analyze three different field liquefaction databases and the results are compared with the neural network approaches. The developed spline functions and the limit state functions obtained reveal that the LR_MARS models can capture and describe the intrinsic, complex relationship between seismic parameters, soil parameters, and the liquefaction potential without having to make any assumptions about the underlying relationship between the various variables. Considering its computational efficiency, simplicity of interpretation, predictive accuracy, its data-driven and adaptive nature and its ability to map the interaction between variables, the use of LR_MARS model in assessing seismic liquefaction potential is promising.

On the Volumetric Balanced Variation of Ship Forms (체적 밸런스 선형변환방법에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper aims at contributing to the field of ship design by introducing new systematic variation methods for ship hull forms. Hull form design is generally carried out in two stages. The first is the global variation considering the sectional area curve. Because the geometric properties of a sectional area curve have a decisive effect on the global hydrodynamic properties of ships, the design of a sectional area curve that satisfies various global design conditions, e.g., the displacement, longitudinal center of buoyancy, etc., is important in the initial hull form design stage. The second stage involves the local design of section forms. Section forms affect the local hydrodynamic properties, e.g., the local pressure in the fore- and aftbody. This paper deals with a new method for the systematic variation of sectional area curves. The longitudinal volume distribution of a ship depends on the sectional area curve, which can geometrically be controlled using parametric variation and a variation that uses the modification function. Based on these methods, we suggest a more generalized method in connection with the derivation of the lines for a new design compared to those for similar ships. This is the so-called the volumetric balanced variation (VOB) method for ship forms using a B-spline modification function and an optimization technique. In this paper the global geometric properties of hull forms are totally controlled by the form parameters. We describe the new method and some application examples in detail.

Development of Level Detecting Algorithm for Scoliosis using X-ray Image (X-ray 영상을 이용한 척추측만증 정도 검출 알고리즘 개발)

  • Park, Eun-Jeong;Jeong, Ju-Young;Lee, Ki-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.242-249
    • /
    • 2011
  • In this study, The degree of scoliosis, an algorithm that can automatically detect was developed. Developed system was used for X-ray imaging source. The formula for the degree of curvature of the spine of the S <0, and, L> 0 is satisfied with the condition $Y=SX^2+L$ is a function expression. X-axis length can be changed and applied equally in all spline function graph, and the slope is $S=-L/92^2$. The graph on the degree of scoliosis of the differential equation Y'= 2SX could see that the extracted spine wire for the classification and the classification of scoliosis, the degree is determined as the available algorithms.

Trajectory Parameter Optimization using Genetic Algorism (유전알고리즘을 이용한 워킹 궤적 파라미터의 최적화)

  • Son, In-Hye;Kim, Dong-Han;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.75-76
    • /
    • 2008
  • In oder for the robot to walk with stability, trajectory generation method for the biped robot is important. In this paper proposed the genetic algorithm to optimize biped robot motion parameters. Because most of trajectory generation, the walking parameters determined arbitrarily. Formulating the constraints of the motion parameters, and the trajectory is derived by cubic spline function. Finally walking patterns are described through simulation studies. When the ZMP(zero moment point) and DSM(dynamic stability margin) are satisfied, the walking pattern is chosen.

  • PDF

Shape Optimization of Laminated Composite Shell for Various Layup Configurations (적층배열에 따른 복합재료 쉘의 형상최적화)

  • 김현철;노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.317-324
    • /
    • 2004
  • Shape design optimization of shell structure is implemented on a basis of integrated framework of geometric modeling and finite element analysis which is constructed on the geometrically exact shell theory. This shell theory enables more accurate and robust analysis for complicated shell structures, and it fits for the nature of B-spline function which Is popular modeling scheme in CAD field. Shape of laminated composite shells is optimized through genetic algorithm and sequential linear programming, because there ire numerous optima for various configurations, constraints, and searching paths. Sequential adaptation of global and local optimization makes the process more efficient. Two different optimized results of laminated composite shell structures to minimize strain energy are shown for different layup sequence.

  • PDF

Efficient Generation of Spatiotemporal Images for Leukocyte Motion Detection in Microvessels

  • Kim, Eung Kyeu;Jang, Byunghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.76-84
    • /
    • 2017
  • This paper presents an efficient method for generating spatiotemporal images in order to detect leukocyte motion in microvessels. Leveraging the constraint that leukocytes move along the contour line of the blood vessel wall, our proposed method efficiently generates spatiotemporal images for leukocyte motion detection. To that end, translational motion caused by in vivo movement is first removed by a template matching method. Second, the blood vessel region is detected by an automatic threshold selection method in order to binarize temporal variance images. Then, the contour of the blood vessel wall is expressed via B-spline function. Finally, using the detected blood vessel wall's contour as an initial curve, the plasma layer for the most accurate position is determined in order to find the spatial axis via snake, and the spatiotemporal images are generated. Experimental results show that the spatiotemporal images are generated effectively through comparison of each step with three images.

Defect Shape Recovering by Parameter Estimation Arising in Eddy Current Testing

  • Kojima, Fumio
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.622-634
    • /
    • 2003
  • This paper is concerned with a computational method for recovering a crack shape of steam generator tubes of nuclear plants. Problems on the shape identification are discussed arising in the characterization of a structural defect in a conductor using data of eddy current inspection. A surface defect on the generator tube ran be detected as a probe impedance trajectory by scanning a pancake type coil. First, a mathematical model of the inspection process is derived from the Maxwell's equation. Second, the input and output relation is given by the approximate model by virtue of the hybrid use of the finite element and boundary element method. In that model, the crack shape is characterized by the unknown coefficients of the B-spline function which approximates the crack shape geometry. Finally, a parameter estimation technique is proposed for recovering the crack shape using data from the probe coil. The computational experiments were successfully tested with the laboratory data.

G2 Continuity Smooth Path Planning using Cubic Polynomial Interpolation with Membership Function

  • Chang, Seong-Ryong;Huh, Uk-Youl
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.676-687
    • /
    • 2015
  • Path planning algorithms are used to allow mobile robots to avoid obstacles and find ways from a start point to a target point. The general path planning algorithm focused on constructing of collision free path. However, a high continuous path can make smooth and efficiently movements. To improve the continuity of the path, the searched waypoints are connected by the proposed polynomial interpolation. The existing polynomial interpolation methods connect two points. In this paper, point groups are created with three points. The point groups have each polynomial. Polynomials are made by matching the differential values and simple matrix calculation. Membership functions are used to distribute the weight of each polynomial at overlapped sections. As a result, the path has $G^2$ continuity. In addition, the proposed method can analyze path numerically to obtain curvature and heading angle. Moreover, it does not require complex calculation and databases to save the created path.