• Title/Summary/Keyword: spline approximation

Search Result 109, Processing Time 0.027 seconds

Regularization of Shape from Shading Problem Using Spline Functional (스플라인 범함수에 의한 명암에서 형상복구 문제의 정즉화)

  • 최연성;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1532-1540
    • /
    • 1988
  • Shape from shading problem, such as other most early visions, is ill-posed problems, which can be solved by the use of regularization methods. This paper proposes the three kinds of stabilizer for the regularization. These are integrability constraints and spline functionals. Parallel iterative schemes are derived in the form of the finite difference approximation. Experimental results, show that the average error in surface orientation is less than 5%.

  • PDF

Modeling of Structure of the Specialized Processor on the Basis Ryabenko's Splines for Signal Processing

  • Zaynidinov, Hakimjon;Nishonboev, Golibjon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.424-427
    • /
    • 2011
  • The paper is devoted to problem of spline approximation. A new method of nodes location for curves and surfaces computer construction by means of B-splines, of Reyabenko's splines and results of simulink-modeling is presented. The advantages of this paper is that we comprise the basic spline with classical polynomials both on accuracy, as well as degree of paralleling calculations are also show's.

Reverse Engineering of Compound Surfaces on the Machine Tool using a Vision Probe (비전 프로브를 이용한 기상에서의 복합곡면의 역공학)

  • 김경진;윤길상;초명우;권혁동;서태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.287-292
    • /
    • 2002
  • This paper presents a reverse engineering method for compound surfaces using vision system. A CNC machining center is used as a measuring station, which is equipped with slit beam generator and vision probe. Since obtained data using slit beam or laser scanner may have much data loss along the edge of compound surfaces, an algorithm is presented in this study to recover missing geometric data at such region. First, b-spline interpolation is applied to extract edge information of the surface, and as a next step, b-spline approximation is applied to recover the missing geometric data. Finally, b-spline skinning method is applied to regenerate the surface information. Appropriate simulation and experimental works are preformed to very the effectiveness of the proposed methods.

  • PDF

A STUDY ON THE NURBS GRID GENERATION AND GRID CONTROL (NURBS를 이용한 격자생성 및 제어기법)

  • Yoon, Yong-Hyun
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • A fast and robust method of grid generation to multiple functions has been developed for flow analysis in three dimensional space. It is based on the Non-Uniform Rational B-Spline(NURBS) of an approximation method. Many of NURBS intrinsic properties are introduced and much more easily understood. The grid generation method, details of numerical implementation. examples of application, and potential extensions of the current method are illustrated in this paper. The object of this study is to develop the surface grid generation and the grid cluster techniques capable of resolving complex flows with shock waves, expansion waves, shear layers. The knot insert method of Non-Uniform Rational B-Spline seems well worked. In addition, NURBS has been widely utilized to generate grids in the computational fluid dynamics community. Computational examples associated with practical configurations have shown the utilization of the algorithm.

Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory

  • Viswanathan, K.K.;Javed, Saira;Aziz, Zainal Abdul
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.259-275
    • /
    • 2013
  • Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness is analyzed under shear deformation theory with different boundary conditions by applying collocation with spline approximation. Linear and exponential variation in thickness of layers are assumed in axial direction. Displacements and rotational functions are approximated by Bickley-type splines of order three and obtained a generalized eigenvalue problem. This problem is solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration of three and five-layered conical shells, made up of two different type of materials are considered. Parametric studies are made for analysing the frequencies of the shell with respect to the coefficients of thickness variations, length-to-radius ratio, length-to-thickness ratio and ply angles with different combination of the materials. The results are compared with the available data and new results are presented in terms of tables and graphs.

B-SPLINE TIGHT FRAMELETS FOR SOLVING INTEGRAL ALGEBRAIC EQUATIONS WITH WEAKLY SINGULAR KERNELS

  • Shatnawi, Taqi A.M.;Shatanawi, Wasfi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.363-379
    • /
    • 2022
  • In this paper, we carried out a new numerical approach for solving integral algebraic equations with weakly singular kernels. The novel method is based on the construction of B-spline tight framelets using the unitary and oblique extension principles. Some numerical examples are given to provide further explanation and validation of our method. The result of this study introduces a new technique for solving weakly singular integral algebraic equation and thus in turn will contribute to providing new insight into approximation solutions for integral algebraic equation (IAE).

APPROXIMATION METHOD FOR SCATTERED DATA FROM SHIFTS OF A RADIAL BASIS FUNCTION

  • Yoon, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1087-1095
    • /
    • 2009
  • In this paper, we study approximation method from scattered data to the derivatives of a function f by a radial basis function $\phi$. For a given function f, we define a nearly interpolating function and discuss its accuracy. In particular, we are interested in using smooth functions $\phi$ which are (conditionally) positive definite. We estimate accuracy of approximation for the Sobolev space while the classical radial basis function interpolation applies to the so-called native space. We observe that our approximant provides spectral convergence order, as the density of the given data is getting smaller.

  • PDF

Optimal Non-Uniform Resampling Algorithm (최적 비정규 리샘플링 알고리즘)

  • Sin, Geon-Sik;Lee, Hak-Mu;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.50-55
    • /
    • 2002
  • The standard approach of image resampling is to fit the original image with continuous model and resample the function at a desired rate. We used the B-spline function as the continuous model because it oscillates less than the others. The main purpose of this paper is the derivation of a nonuniform optimal resampling algorithm. To derive it, needing approximation can be computed in three steps: 1) determining the I-spline coefficients by matrix inverse process, 2) obtaining the transformed-spline coefficients by the optimal resampling algorithm derived from the orthogonal projection theorem, 3) converting of the result back into the signal domain by indirect B-spline transformation. With these methods, we can use B-spline in the non-uniform resampling, which is proved to be a good kernel in uniform resampling, and can also verify the applicability from our experiments.

3-D Solder Paste Inspection Based on B-spline Surface Approximation (B-spline 표면 근사화 기반의 3차원 솔더 페이스트 검사)

  • Lee, Joon-Jae;Lee, Byoung-Gook;Yoo, Jae-Chil
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.10 no.1
    • /
    • pp.31-45
    • /
    • 2006
  • Recently advanced device and sophisticated manufacture process by high-density, high-integration require critical inspection criteria in SMT(surface mounting technologies). Especially for solder paste which come out over 60% of inferior goods of all product, 3-dimensional inspection replaces 2-D inspection as a effectiveness substitute of this trend. Therefore this paper proposes a fast 3-D inspection system and measurement algorithm automatically inspecting 3-D solder paste of PCB in SMT assembly line. The proposed method generates 3-D surface of data using B-spline algorithm and then extracts to inspect the pad.

  • PDF

The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions

  • Shojaee, S.;Rostami, S.;Moeinadini, A.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.211-229
    • /
    • 2011
  • In this paper, we present a new explicit procedure using periodic cubic B-spline interpolation polynomials to solve linear and nonlinear dynamic equation of motion governing single degree of freedom (SDOF) systems. In the proposed approach, a straightforward formulation was derived from the approximation of displacement with B-spline basis in a fluent manner. In this way, there is no need to use a special pre-starting procedure to commence solving the problem. Actually, this method lies in the case of conditionally stable methods. A simple step-by-step algorithm is implemented and presented to calculate dynamic response of SDOF systems. The validity and effectiveness of the proposed method is demonstrated with four examples. The results were compared with those from the numerical methods such as Duhamel integration, Linear Acceleration and also Exact method. The comparison shows that the proposed method is a fast and simple procedure with trivial computational effort and acceptable accuracy exactly like the Linear Acceleration method. But its power point is that its time consumption is notably less than the Linear Acceleration method especially in the nonlinear analysis.