• Title/Summary/Keyword: splice length

Search Result 128, Processing Time 0.025 seconds

Comuarative Evaluation on Strength of Several Grout-filled Splice Sleeve (각종 그라우트 충전식 철근이음의 내력에 대한 비교평가)

  • Kim Hyong-Kee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.635-643
    • /
    • 2004
  • In this study, the tensile strength of 321 full-sized grout-filled splice steeve specimens were compared and analyzed in order to afford the data for a reasonable and economical design of this system. The experimental variables analyzed in this study were embedment length of reinforcing bars, compressive strength of grout, sleeve geometry, loading pattern and final failure mode of specimen. Following main conclusions are obtained : 1) The strength of grout-filled splice sleeve tends to be improved with increasing compressive strength of grout and embedment length of reinforcing bars. Specially this tendency appears apparent in specimens of bond failure rather than rebar failure. 2) The results of this study show that the sleeve geometry have influence on the bond strength of grout-filled splice sleeve. 3) The grout-filled splice sleeve of bond failure don't show the difference of tensile strength according to size of rebar. 4) It is verified that the tensile strength required in ACI and domestic code is retained either when the compressive strength of grout over 70 MPa is used with embedment length of reinforcing bars over 4.5d or when the compressive strength of grout over 80 MPa is used with embedment length of rebars over 3.9d. 5) It is verified that the tensile strength required in AIJ code is retained in case when the embedment length of reinforcing bars is 0.8 times the rebar diameter longer than in ACI code.

Structural Performance of Steel Pipe Splice for SD500 High-strength Reinforcing Bar under Cyclic Loading

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • It is the purpose of this study to evaluate the structural performance of steel pipe splice for SD500 high-strength reinforcing bar, through a cyclic loading test. The experimental variables adopted in this study include the development length of rebar, the type of sleeve, and size of reinforcing bar, among others. The results of this study showed that the developed steel pipe splice system for SD500 high-strength reinforcing bar, retained the structural performance required in domestic, ACI and AIJ code. It is considered that the study result presented in this paper can be helpful in developing a reasonable design method for a steel pipe splice system for SD500 high-strength reinforcing bar.

A Study on the Development of Chonggu Splice-Sleeve System (청구 스플라이스 슬리브 시스템 개발에 관한 연구)

  • 곽철승;이용재;이동우;김병균;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.508-513
    • /
    • 1996
  • The purpose of this paper, having chosen the connection method, filled by High-strength mortar, in conncetion of PC member, is to study the mechanical behaviour and practical usage of the method. The paper estimates the connection ability of Reinforced-bar, that is, Sleeve considering the effect of Reinforced-bar's dimeter. Sleeve's length and diameter in the structural behaviour of mortar-filled connection, therefore the behaviour of Splice-Sleeve exists in concrete practically. This paper discusses the effect of the concrete in Splice-Sleeve. Also, to estimate structural behaviour in a practical wall panel, the upper and bottom wall panels are produced and the behaviour of Splice-Sleeve is discussed. And then Vertical Tie Bar being designed by using Precast method, this paper presents the various application and the practicable method using Splice-Sleeve.

  • PDF

Experimental Research on Development and Splices Length in High-Strength Concrete Flexural Members (고강도 콘크리트 휨부재의 정착 및 겹침이음길이에 관한 실험적 연구)

  • 이기열;김우;정기오
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.865-871
    • /
    • 2003
  • This paper presents the test results of 24 beam-end specimens to investigate the effect of concrete strength and cover thickness on the development resistance capacity in tensile lap splice length regions. The results showed that as higher strength concrete was employed, nor only development resistance capacity was influenced by cover thickness, but also more sufficient safety factor reserved shorter than the lap splice length provision in current design code. From experimental research results, high-strength concrete development length was not inverse ratio of ($\sqrt{f_{ck}}$) but directly inverse of $f_{ck}$, and it is also said that there is a certain limit length of the embedded steel over which the assumption of uniform bond stress distribution is valid specially for high-strength concrete not having a same embed length such as normal-strength concrete in current design criteria hypothesis.

  • PDF

Development and Splice Lengths of FRP Bars with Splitting Failures (쪼갬파괴에 의한 FRP 보강근의 정착길이와 이음길이)

  • Chun, Sung-Chul;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.519-525
    • /
    • 2010
  • Data from beam-based bond tests for FRP bars in the literature were collected and regression analyses were conducted for the data of splitting failure. Average bond strengths obtained from splice tests were found to be lower and more affected by C/$d_b$ values than average bond strengths from anchorage tests, indicating needs of new design equation for the splice length of FRP bars based on the data of splice tests only. In addition, the variation of bond strengths was greater than that of tensile strengths of FRP bars and, therefore, a new safety factor should be involved for the design equation. Five percent fractile coefficients were used to develop the design equations based on the assumption that load and resistance factors for FRP reinforced concrete structures are same to the factors for steel reinforced concrete structures. The proposed design equations give economical and reliable lengths for development and splice of FRP bars. The proposed equation for splice provides shorter lengths than the ACI 440 equation in case of C/$d_b$ of 3.0 or greater. Because FRP bars are expected to be used in slabs and walls exposed to weather with thick cover and large spacing between bars, the proposed equation gives optimal splice lengths.

Strength of Compression Lap Splice in Confined Concrete (횡구속된 콘크리트에서 압축이음강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond.

  • PDF

Compression Lap Splice Length in Concrete of Compressive Strength from 40 to 70 MPa (40-70 MPa 콘크리트에서의 철근 압축이음 길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.401-408
    • /
    • 2009
  • A compression lap splice becomes an important issue due to development of ultra-high strength concrete. Current design codes regarding compression lap splice do not utilize merits of the improved strength of ultra-high strength concrete. Especially, a compression lap splice can be calculated longer than a tension lap splice according to the codes because they do not consider effects of compressive strength of concrete and transverse reinforcement. This anomaly confuses engineers in practice. Design equation is proposed for compression lap splice in 40 to 70 MPa of compressive strength of concrete. The proposed equation is based on 51 specimens conducted by authors. Basic form of the equation includes main parameters which are derived from investigating test results. Through two-variable non-linear regression analysis of measured splice strengths, a strength equation of compression lap splices is then derived. A specified splice strength is defined using a 5% fractile coefficient and a lap length equation is constructed. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

An Experimental Study on Flexural Behavior of One-Way Concrete Slabs Using Structural Welded Wire-Fabric (구조화 용접철강을 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • 허갑수;윤영호;양지수;김석중;정헌수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 1994
  • Recently the construction of residential buildings faces many difficulties due to the shortage of building materials and works. Simplifying the stage of processing and assembling reinforcing rods and increasing the efficiency of them in reinforced concrete construction can be used to settle the difficulties. In the respect, structural wire-fabric and loop wire-fabric is utilized. The purpose of this study, on condition of being $210kg/cm^2$ concrete strength, is to analyze the structural and flexural properties of one-way concrete slabs by testing with different reinforcing type, tensile steel ratio based with minimum steel ratio, boundary condition and splice length which affect the maximum width of crack and ductility factor. From the test results, the ductility factor is approved that the slabs using deformed bar were much better than that using wire-fabric, and 30D of splice length was appropriate in the slabs as splice length. In the control of the maximum crack width the slabs using wire-fabric and loop wire-fabric were much better than that using deformed bar.

Prying Action of Spliced Reinforcements in Tension (인장 겹침이음에서 프라이 거동의 영향)

  • Chun, Sung-Chul;Choi, Dong-Uk;Ha, Sang-Su;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1085-1088
    • /
    • 2008
  • Splice of reinforcement is inevitable in reinforced concrete structures and, generally, lap splices are used. Lap length for tension splice is determined from development length in tension. The development length is calculated from an experimental model which was based on data of tests on anchorage and splice. Longitudinal reinforcements in flexural members are deformed and, therefore, prying action happens in spliced reinforcements unlike anchored reinforcements. The prying action induces tensile stress in cover concrete and this tensile stress plays the same role to a circumferential tensile stress caused by bond. Because splitting failure is assumed to occur when the summation of tensile stresses caused by the prying action and the bond is equal to the tensile strength of the concrete, the prying action reduces the bond strength of spliced reinforcements. A theoretical model for the prying action is developed and effects of the prying action on the bond strength are assessed. The tensile stress by the prying action is proportional to tensile strength and modulus of elasticity of reinforcements. In addition, the tensile stress is inversely proportional to spacing of reinforcements. Consequently, longer splice length is required for spliced reinforcements with small spacing in flexible members.

  • PDF

Behavior and Capacity of Compression Lap Splice in Confined Concrete with Compressive Strength of 40 and 60 MPa (횡보강근이 있는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.389-400
    • /
    • 2009
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement and bar size on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. The results of the tests with bar diameters of 22 and 29 mm show that there is no size effect of bar diameter on compression lap splice. Bond strength of small bar diameter may increase. However, large diameters of re-bars are used in compression member and the size effect of re-bars does not have to be considered in compression lap splice. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond. Because the stresses developed by bond in compression splice with transverse reinforcement are nearly identical to or less than those in tension splice with same transverse reinforcement, strength increment of compression splice is attributed to end bearing only.