• 제목/요약/키워드: spiral flow

검색결과 187건 처리시간 0.023초

스파이럴 제트 유동에 미치는 환형 슬릿의 영향에 관한 연구 (The Effect of Annular Slit on a Compressible Spiral Jet Flow)

  • 조위분;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2029-2034
    • /
    • 2004
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of a conical convergent nozzle. The present study describes a computational work to investigate the effects of annular slit on the spiral jet. In the present computation, a finite volume scheme is used to solve three dimensional Naver-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The annular slit width and the pressure ratio of the spiral jet are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained obviously show that the annular slit width and the pressure ratio of the spiral jet strongly influence the characteristics of the spiral jets, such as tangential and axial velocities.

  • PDF

A Study on the Flow Characteristics of the Spiral Flow Nozzle with the Width Change of Annular Slit

  • Kim, T.H.;Setoguchi, T.;Lee, Y.W.
    • 한국가시화정보학회지
    • /
    • 제7권1호
    • /
    • pp.14-20
    • /
    • 2009
  • In comparison with previous researches fur swirling flow, the spiral flow self-generated in the spiral flow nozzle has some different characteristics. It is not needed a compulsive tangential momentum to get its velocity component and has long potential core, relatively low swirl ratio, and high focusing ability. In this study, the self-generated mechanism of the spiral flow was clarified and the effect on the width of annular slit on spiral flow characteristics was investigated experimentally and numerically. As a result, the existence of tangential velocity component regardless of a compulsive angular momentum is clarified and the results obtained by experiment have a satisfactory agreement with those by numerical method, quantitatively and qualitatively.

아음속 스파이럴 제트 유동에 관한 기초적 연구 (A Fundamental Study of the Subsonic Spiral Jet)

  • 조위분;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.502-507
    • /
    • 2003
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of convergent nozzle. The objective of the present study is to understand the flow characteristics of the spiral jet, using a computational method. A finite volume scheme is used to solve 3-dimensional Navier-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The computational results are validated by the previous experimental data. It is found that the spiral jet is generated by coanda effect at the inlet of the convergent nozzle and its fundamental features are dependent the pressure ratio of the radial flow through the annular slit and the coanda wall curvature.

  • PDF

A Study on the Flow Characteristics with the Width of Annular Slit in Spiral Flow Nozzle

  • Kim, T.H.;Setoguchi, T.;Lee, Y.W.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.143-148
    • /
    • 2007
  • In comparison with previous researches for swirling flow, the spiral flow self-generated in the spiral flow nozzle has some different characteristics. It is not needed a compulsive tangential momentum to get its velocity component and has long potential core, relatively low swirl ratio, and high focusing ability. In this study, the self-generated mechanism of the spiral flow was clarified and the effect on the width of annular slit on spiral flow characteristics was investigated experimentally and numerically. As a result, the existence of tangential velocity component regardless of a compulsive angular momentum is clarified and the results obtained by experiment have a satisfactory agreement with those by numerical method, quantitatively and qualitatively.

  • PDF

반경방향으로의 온도구배가 Circular-Couette 유동에 미치는 영향 (THE EFFECT OF RADIAL TEMPERATURE GRADIENT ON THE CIRCULAR-COUETTE FLOW)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.16-24
    • /
    • 2009
  • Numerical simulation has been carried out to investigate the influence of radial temperature gradient on the Circular-Couette flow. Varying the Grashof number, we study the detailed flow and temperature fields. The current numerical results show good agreement with the analytical and experimental results currently available. It turns out that spiral vortices are generated by increasing temperature gradient. We classify the flow patterns for various Grashof number based on the characteristics of flow fields and spiral vortices. The correlation between Richardson number with wave number shows that the spiral angle and size of spiral vortices increase with increasing Richardson number.

Spiral Tube 내에서의 3차원 유동 해석 (A Numerical Study of 3-D Flows in Spiral Tubes with Square Cross-Section)

  • 허남건;김성원
    • 한국전산유체공학회지
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 1999
  • Spiral tube heat exchangers can find numerous applications in many engineering fields. Flow in spiral tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

스파이럴 제트 유동에 미치는 축소노즐 각도의 영향 (The Effect of Convergent Nozzle Angle on a Spiral Jet Flow)

  • 조위분;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1482-1487
    • /
    • 2004
  • In general the swirl jet is generated by the injected flow that is forced to the tangential direction. A spiral nozzle which is composed of an annular slit and a convergent nozzle, is released the spiral jet that is generated by the radial flow injection through an annular slit. The objective of the present study is to investigate the additional study that is studied a changed the convergent nozzle angle and nozzle length. In the present computation, a finite volume scheme is used to solve three dimensional Navier-Stokes equations with RNG $k-{\varepsilon}$ turbulent model. The convergent nozzle angle and the nozzle length of the spiral nozzle are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained show that the convergent nozzle angle and the nozzle length of the spiral jet strongly influence the characteristics of the spiral jets, such as a tangential and a jet width.

  • PDF

Study on velocity profiles around spiral baffle plates in a horizontal circular tube without inner tubes

  • Chang, Tae-Hyun;Lee, Kwon-Soo;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.403-411
    • /
    • 2016
  • Usually shell and tube heat exchangers are employed to recover energy between fluids. Recently, numerous papers on these heat exchangers have been published; however, the velocity and temperature profiles or comparison of the features of the flow with or without inside tubes have rarely been described. In this research, experimental and numerical studies were carried out to investigate the characteristics of the flow around the spiral baffle plates without inside tubes in a horizontal circular tube using a particle image velocimetry method and ANSYS 14.0~15.0 version (Fluent). The results showed that swirling flow was produced between the spiral baffle plates. The tangential components were strong between the two spiral baffles; however, the axial or radial velocities components were indicating nearly zero. From the spiral motion in the space of the two baffles, it is considered that there were no dead zones between the spiral baffle.

유체유동에 의한 경사원주의 진동과 제진에 관한 연구 (Flow Induced Vibration and Suppression of Inclined Cylinder)

  • 양보석;복정희일랑;암호탁삼
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1381-1390
    • /
    • 1992
  • 본 연구에서는 경사원주에서 발생하는 소용돌이 여기진동을 억제하기 위한 방 법으로 원주구조물 주위에서 발생하는 규칙적인 소용돌이 방출에 의한 여진력을 감소 시키도록 원주표면에 fin이나 wire를 부착시켜 단면형상을 바꾸는 방안을 실험적으로 검토한다. 즉, 밀폐순환식 유로을 이용하여 흐름에 경사되도록 탄성지지된 원주에 나선상의 fin과 wire를 감아, 경사각(.theta.)을 45, 60, 75, 90도, 나선피치각(.alpha.)을 30, 35, 40, 45, 50, 55, 60도, 나선권수(n)를 1,2,3으로 하여, 진동특성을 실험적으로 조사하고, plain원주와 비교하여 제진효과를 확인하며, 더우기 나선핀 원주의 최적형 상을 구하는 것을 목적으로 한다.