• 제목/요약/키워드: spinning variables

검색결과 22건 처리시간 0.027초

The effect of the spinning conditions on the structure of mesophase pitch-based carbon fibers by Taguchi method

  • Jiang, Zhao;Ouyang, Ting;Yao, Xiangdong;Fei, Youqing
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.89-98
    • /
    • 2016
  • Taguchi’s experimental design was employed in the melt spinning of molten mesophase pitch to produce carbon fibers. The textures of the obtained carbon fibers were radial with varied crack angles, as observed by scanning electron microscopy and polarized optical imaging. The diameter, crack angle, preferred orientation, and tensile modulus of the produced samples were examined to investigate the influence of four spinning variables. The relative importance of the variables has been emphasized for each characteristic. The results show that thicker carbon fiber can be obtained with a smaller entry angle, a higher spinning temperature, a reduced winding speed, and an increased extrusion pressure. The winding speed was found to be the most significant factor in relation to the fiber diameter. While it was observed that thicker carbon fiber generally shows improved preferred orientation, the most important variable affecting the preferred orientation was found to be the entry angle. As the entry angle decreased from 120° to 60°, the shear flow was enhanced to induce more ordered radial alignment of crystallite planes so as to obtain carbon fibers with a higher degree of preferred orientation. As a consequence, the crack angle was increased, and the tensile modulus was improved.

상지 이용 유무와 훈련 기간이 무용 회전 동작의 기능에 미치는 영향 (The Effect of Upper Extremity Usage and Length of Training to the Function of Dance Turn)

  • 박양선;임영태
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.175-184
    • /
    • 2007
  • The first purpose of this study was to compare kinematic variables during spinning motion with or without upper extremity and identify the most effective spinning method. The second purpose of this study was to compare functional difference between novice and elite dancers with the term of training. Ten experienced female dancers and ten novices were recruited as subjects for this study. Elite group was asked to perform turn motion with three types of upper extremity. Novice group has taken training of spotting technique for five weeks. Four Falcon HiRES cameras were used to analyze kinematic variables including head angular velocity and CG displacement during spinning. These data were sampled before training, after 3-week, and 5-week of training. Eight different events in two consecutive turns were defined for statistical comparison. One-way ANOVA was performed to compare among the kinematics of turning motion with three types of upper extremity. Independent t-test also used to compare kinematics between elite and novice at three different length of training. As results, spinning with both arm increased angular velocity and stability compared to the turning motion with one arm or with arm strapped and found out that the turn with both arm was the most effective way of spin. Also, for novice dancers, three weeks of training were needed to complete spinning motion.

티타늄 합금재의 튜브 스피닝 공정해석 (A Study on the Process of Tube Spinning for the Titanium Alloy)

  • 홍대훈;황두순;이병섭;홍성인
    • 한국추진공학회지
    • /
    • 제4권3호
    • /
    • pp.55-63
    • /
    • 2000
  • 튜브 스피닝 성형에 대한 연구는 전통적 스피닝 공정에 비해 본질적으로 변형의 메카니즘이 보다 복잡한데 기인하여 이론 덴 해석 연구가 국한적으로 이루어져 왔다. 특히, 상계법을 이용한 해석의 제한성을 극복하기 위한 유한요소법을 이용한 연구는 아직 소수에 그치고 있는 실정이다. 본 연구에서는 티타늄 합금을 재료로 사용한 용기의 튜브 스피닝 공정을 상계법과 유한요소법을 이용하여 조사하였다. 해석에 있어 티타늄합금의 성형특성을 고려하여 상계법을 통해 공정변수가 설정되었으며, 유한요소해석 code인 ABAQUS를 사용하여 티타늄 합금재의 신장량과 편평도를 얻었다. 해석에 사용된 독립변수들은 로울러의 전 ·후방각도와 가공깊이, Feed rate이며 이 변수들은 유한요소법과 상계 해법을 통하여 최적화된다. 이 해석법에서 우리는 스피닝 가공의 가공동력과 힘 그리고 지름의 감소 율윽 얻을 수 있고, 또한 유한요소해석에 의해서 가공재의 편평도와 신장량도 구할 수 있다. 그 결과로부터 정해진 변수들이 티타늄 합금의 스피닝 공정에 있어서 중요한 요소임을 알 수 있으며, 그 변수들의 최적값을 얻을 수 있다.

  • PDF

상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구 (A study on the process of tube end spinning by the upper bound method and the finite element method)

  • 김전형;홍성인;이정환;이영선
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.517-526
    • /
    • 1997
  • The purpose of this study is to investigate changes in the wall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables are ; workpiece material, original wall thickness of tube, die angle, friction, and reduction of diameter. The results indicate that these five variables are factors of the increase in wall-thickness and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses similar to actual forming process. Optimum process variables which are obtained by upper bound method are used in ABAQUS pre-model.

  • PDF

스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구 (The Spinnability of Multi-step Cylindrical Cup in Spinning Process)

  • 박중언;한창수;최석우;김승수;나경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Analysis of the effect of flow-induced crystallization on the stability of low-speed spinning using the linear stability method

  • Shin Dong Myeong;Lee Joo Sung;Jung Hyun Wook;Hyun Jae Chun
    • Korea-Australia Rheology Journal
    • /
    • 제17권2호
    • /
    • pp.63-69
    • /
    • 2005
  • The stability of low-speed spinning process exhibiting spinline flow-induced crystallization (FIC) with no neck-like spinline deformation has been investigated using the method of linear stability analysis. Effects of various process conditions such as fluid viscoelasticity and the spinline cooling on the spinning stability have been found closely related to the development of the spinline crystallinity. It also has been found that the FIC makes the system less stable or more unstable than no FIC cases when the spinline crystallinity reaches its maximum possible value, whereas the FIC generally stabilizes the system if the crystallinity doesn't reach its maximum value on the spinline. It is believed that the destabilizing effect of the FIC on low-speed spinning when the crystallinity is fully developed on the spinline is due to the reduction of the real spinning length available for deformation on the spinline. On the other hand, the increased spinline tension caused by the FIC when the maximum crystallinity is not reached on the spinline and thus no reduction in the spinning length occurs, makes the sensitivity of spinline variables to external disturbances smaller and hence stabilizes the system. These linear stability results are consistent with the findings by nonlinear transient simulation, as first reported by Lee et al. (2005b).

전기스피닝 공구의 삼분력 해석 (Analysis of three force components of shear spinning)

  • 최재찬;백남주
    • 대한기계학회논문집
    • /
    • 제5권2호
    • /
    • pp.88-93
    • /
    • 1981
  • The three force components of shear spinning are calculated by a newly proposed deformation model. The spinning process is understooed as shearing deformation arter uniaxial yuelding by ending, and shear stress .tau.$\sub$rz/ becomes .kappa. the yueld limit in pure shear, in the deformation zone. The tangential forces are calculated and then the feed forces and normal foeces are obtained by assuming a nuiform distribution of roller pressure on the contact surface. An optimum contact area is obtaned by minimizing the bending energy required to obtain the assumed deformation mechanism. The calculated forces are compared with experimental data form published literature and present experiments. Good agreement cetween calculated and experimental values for working forces is obtained over a wide range of process variables.

자동차용 대형 휠 디스크의 스피이닝 설계 (The Process Planning of Disc Spinning for a Large Wheel of Automobile)

  • 이항수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 금형가공 심포지엄
    • /
    • pp.28-42
    • /
    • 1998
  • Spinning is one of the incremental forming process by the rotating mandrel and forming roller, and has been applied to manufacturing the wheel disc of automobile to simplify the manufacturing process and to improve the mechanical properties of product. In the proesent study the process variables have been extracted and considered to decide the specification of the spinning machine. The maximum values of working load and power have been evaluated and the blank size has been disigned. The shape and dimensionof forming roller have been designed and the process condition such a s rotational velocity of mandrel and the feedrate of roller have been decided.

  • PDF

Melt spinning법에 의한 n형 90% $Bi_2Te_3$+10% $Bi_2Se_3$ 열전소결체의 열전특성 (Thermoelectric Properties of N-type 90% $Bi_2Te_3$+10% $Bi_2Se_3$ Thermoelectric Materials Produced by Melt spinning method and Sintering)

  • 김익수
    • 한국분말재료학회지
    • /
    • 제5권1호
    • /
    • pp.50-56
    • /
    • 1998
  • A new process using rapid solidification (melt spinning method) followed by pressing and sintering was investigated to produce the n-type thermoelectric ribbons of 90% $Bi_2Te_3$+10% $Bi_2Se_3$ doped with $CdCl_2$. Quenched ribbons are very brittle and consisted of homogeneous $Bi_2Te_3-Bi_2Se_3$ pseudo-binary solid solutions. Property variations of the materials was investigated as a function of variables, such as dopant $CdCl_2$ quantity and sintering temperature. When the process parameters were optimized, the maximum figure of merit was $2.146{\times}10^{-3}K^{-1}$.

  • PDF

유연한 베이스 플레이트로 지지되는 회전 유연 HDD 디스크-스핀들계의 유한 요소 진동 해석 (Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by a Flexible Base Plate in a HDD)

  • 한재혁;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.571-577
    • /
    • 2003
  • This research proposes a finite element method to determine the natural vibration characteristics of the spinning disk-spindle system in a HDD including the flexibility of supporting structure. Finite element equations of each substructure are derived with the introduction of consistent variables to satisfy the geometric compatibility at the internal boundaries. The natural frequencies and modes from the global asymmetric matrix equations of motion are determined by using the implicit restarted Arnoldi iteration method. The validity of the proposed method is verified by the experimental modal testing. It also shows that the flexibility of base plate plays an important role to determine the natural frequencies of the spinning disk-spindle system in a HDD.

  • PDF