• 제목/요약/키워드: spinel structure

검색결과 290건 처리시간 0.024초

Mn-Co-O계 NTC 써미스터의 물성에 미치는 혼합의 영향 (Mixing effect on Properties of NTC Thermistor in Mn-Co-O System)

  • 윤상식;김경식;윤상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.459-462
    • /
    • 2001
  • Interface effects on properties of NTC thermistors having Mn-Co-O spinel crytal structure system are analyzed by a mixing rule in case of mixed types and layered types between CuO and $Al_{2}O_{3}$ added compounds. With adding CuO and $Al_{2}O_{3}$, The compounds form completely solid solution and their resistance and B constant are changed due to the variation of conduction electrons by their ionic substitutions. The properties of mixed NTC thermistors are depended on the logarithmic mixing rule by a dispersed phase and they show slightly lower values due to the lattice mixing affect in compared with calculated values. The resistance of layered NTC thennistors is depended upon the series mixing rule containing the value of an interface layer and effected by the variation of its thickness, and it is changed rapidly to the logarithmic mixing rule by the connection between two layers with increasing the interface layer.

  • PDF

Superparamagnetic Properties of Ni0.7Zn0.3Fe2O4 Nanoparticles

  • Lee, Seung-Wha;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.84-88
    • /
    • 2005
  • Nanoparticles $Ni_{0.7}Zn_{0.3}Fe_2O_4$ is fabricated by a sol-gel method. The magnetic and structural properties of powders were investigated with XRD, SEM, $M\ddot{o}ssbauer$ spectroscopy, and VSM. $Ni_{0.7}Zn_{0.3}Fe_2O_4$ powders annealed at $300^{\circ}C$ have a spinel structure and behaved superparamagnetically. The estimated size of $Ni_{0.7}Zn_{0.3}Fe_2O_4$ nanoparticle is about 11 nm. $Ni_{0.7}Zn_{0.3}Fe_2O_4$ annealed at 400 and $500^{\circ}C$ has a typical spinel structure and is ferrimagnetic in nature. The isomer shifts indicate that the iron ions were ferric at the tetrahedral (A) and the octahedral (B). Blocking temperature $(T_B)\;of\;Ni_{0.7}Zn_{0.3}Fe_2O_4$ nanoparticle is about 260 K. The magnetic anisotropy constant of $Ni_{0.7}Zn_{0.3}Fe_2O_4$ annealed $300^{\circ}C$ were calculated to be $1.7X10^6\;ergs/cm^3$. Also, temperature of the sample increased up to $43^{\circ}C$ within 7 minutes under AC magnetic field of 7 MHz.

Synthesis and Magnetic Properties of Nano-sized Mn Ferrite Powder and Film

  • Kwon, Woo-Hyun;Lee, Jae-Gwang;Lee, Young-Bae;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.27-30
    • /
    • 2011
  • Nano-sized manganese ferrite powders and films, $MnFe_2O_4$, were fabricated by the sol-gel method, and the effects of annealing temperature on the crystallographic and magnetic properties were studied by using X-ray diffractometry, field emission scanning electron microscopy, M$\"{o}$ssbauer spectroscopy, and vibrating sample magnetometry. X-ray diffraction spectroscopy of powder samples annealed above 523 K indicated the presence of spinel structure, and the film samples annealed above 773 K also had spinel structure. The particle size increased with the annealing temperature. For the powder samples, the Mossbauer spectra annealed above 573 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of $Fe^{3+}$ ions. Using the M$\"{o}$ssbauer subspectrum area ratio the cation distribution could be written as ($Mn_{0.52}Fe_{0.48}$) $[Mn_{0.48}Fe_{1.52}]$ $O_4$. However the spectrum annealed at 523 K only showed as a doublet due to a superparamagnetic phase. As the annealing temperature was increased, the saturation magnetization and the corecivity of the powder samples increased, as did the coercivity of film samples.

($CO_2$ 분해시 $LiMn_2O_4$의 상변화 (Phase Transitions of $LiMn_2O_4$ on $CO_2$ Decomposition)

  • 권태환;양천모;박영구;조영구;임병오
    • 한국응용과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.33-43
    • /
    • 2003
  • $LiMn_2O_4$ catalyst for $CO_2$ decomposition was synthesized by oxidation method for 30 min at 600$^{\circ}C$ in an electric furnace under air condition using manganese(II) nitrate $(Mn(NO_3)_2{\cdot}6H_2O)$, Lithium nitrate ($LiNO_3$) and Urea $(CO(NH_2)_2)$. The synthesized catalyst was reduced by $H_2$ at various temperatures for 3 hr. The reduction degree of the reduced catalysts were measured using the TGA. And then $CO_2$ decomposition rate was measured using the reduced catalysts. Phase-transitions of the catalysts were observed after $CO_2$ decomposition reaction at an optimal decomposition temperature. As the result of X-ray powder diffraction analysis, the synthesized catalyst was confirmed that the catalyst has the spinel structure, and also confirmed that when it was reduced by $H_2$, the phase of $LiMn_2O_4$ catalyst was transformed into $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase. After $CO_2$ decomposition reaction, it was confirmed that the peak of $LiMn_2O_4$ of spinel phase. The optimal reduction temperature of the catalyst with $H_2$ was confirmed to be 450$^{\circ}C$(maximum weight-increasing ratio 9.47%) in the case of $LiMn_2O_4$ through the TGA analysis. Decomposition rate(%) using the $LiMn_2O_4$ catalyst showed the 67%. The crystal structure of the synthesized $LiMn_2O_4$ observed with a scanning electron microscope(SEM) shows cubic form. After reduction, $LiMn_2O_4$ catalyst became condensed each other to form interface. It was confirmed that after $CO_2$ decomposition, crystal structure of $LiMn_2O_4$ catalyst showed that its particle grew up more than that of reduction. Phase-transition by reduction and $CO_2$ decomposition ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase at the first time of $CO_2$ decomposition appear like the same as the above contents. Phase-transition at $2{\sim}5$ time ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase by reduction and $LiMn_2O_4$ of spinel phase after $CO_2$ decomposition appear like the same as the first time case. The result of the TGA analysis by catalyst reduction ; The first time, weight of reduced catalyst increased by 9.47%, for 2${\sim}$5 times, weight of reduced catalyst increased by average 2.3% But, in any time, there is little difference in the decomposition ratio of $CO_2$. That is to say, at the first time, it showed 67% in $CO_2$ decomposition rate and after 5 times reaction of $CO_2$ decomposition, it showed 67% nearly the same as the first time.

Sol Gel 방법으로 제조한 Al0.2CoFe1.8O4 분말과 박막의 열처리 효과 (Annealing Effects on Al0.2CoFe1.8O4 Ferrite Film and Powder)

  • 채광표;이재광;권혁수;김정훈;이영배
    • 한국자기학회지
    • /
    • 제15권3호
    • /
    • pp.186-190
    • /
    • 2005
  • Co 페라이트 $CoFe_2O_4$에서 Fe의 미량을 Al으로 치환시킨 시료인 $Al_{0.2}CoFe_{1.8}O_4$ 분말과 박막을 sol-gel 방법으로 각각 제조하였다. 이 시료에 대한 열처리 온도에 따른 결정학적 및 자기적 특성의 변화를 비교하기 위하여 X선 회절기, FE-SEM, $M\ddot{o}ssbauer$ 분광기, 진동자력계 등을 이용한 측정을 하였다. 분말 시료를 673K 이상으로 열처리 했을 때 cubic spinel구조가 나타나기 시작하고, 박막 시료는 873 K 이상으로 열처리 했을 때 cubic spinel 구조가 나타나기 시작했다. $M\ddot{o}ssbauer$ 분광 분석을 통해 873 K 이상의 온도로 열처리한 분말시료에서 준강자성 성질이 얻어졌으나 673K로 열처리한 시료는 작은 입자크기 때문에 상자성이 공존하고 473K로 열처리한 시료는 상자성 성질만이 나타났다. VSM 측정에서 분말 시료의 보자력이 673K에서 열처리한 시료까지는 증가하다가 그 이상 열처리한 시료에서는 감소하였으며, 포화자화는 열처리 온도가 높아질수록 계속 증가하였다. 그러나 박막 시료는 873K에서 열처리한 경우 보자력이 1.084kOe이었으나 1073K에서 열처리한 시료의 경우 0.540kOe로 열처리 온도가 증가할수록 보자력이 오히려 감소하였다.

연 X선 방사광 분광법을 이용한 TCr2O4(T = Fe, Co, Ni) 스피넬 산화물의 전자구조 연구 (Investigation of Electronic Structures of TCr2O4 (T = Fe, Co, Ni) Spinel Oxides by Employing Soft X ray Synchrotron Radiation Spectroscopy)

  • 김현우;황지훈;김대현;이은숙;강정수
    • 한국자기학회지
    • /
    • 제23권5호
    • /
    • pp.149-153
    • /
    • 2013
  • 이 연구에서는 방사광 연 X선 광흡수 분광법(soft x-ray absorption spectroscopy: XAS)을 이용하여 $TCr_2O_4$(T = Fe, Co, Ni) 스피넬 산화물들의 전자 구조를 연구하였다. 전이금속 이온들의 2p 준위의 흡수에 의한 XAS 측정으로부터 T(T = Fe, Co, Ni) 이온들의 원자가는 공통적으로 2가($T^{2+}$)이며, Cr 이온의 원자가는 3가 ($Cr^{3+}$) 임을 발견하였다. 그리고 T 이온들은 정사면체 대칭성을 가진 A 사이트에 주로 위치하고, Cr 이온은 정팔면체 대칭성을 가진 B 사이트에 주로 위치함을 알 수 있었는데, 이러한 발견을 통하여 $TCr_2O_4$는 정상 스피넬에 가까운 구조를 가지고 있다고 결론지을 수 있다. 또한 $FeCr_2O_4$$NiCr_2O_4$에서는 얀-텔러 변형이 중요한 역할을 하지만, $CoCr_2O_4$는 얀-텔러 변형이 없는 입방체 구조를 유지하는 원인을 알 수 있었다. 그러므로 $TCr_2O_4$에서 $Cr^{3+}$ 상태의 이온들과 $T^{2+}$ 상태의 이온들 간의 반강자성 결합이 이 산화물들의 자성 특성을 결정하는데 중요한 역할을 한다고 생각된다.

용융염 합성법에 의한 Z형 육방정 페라이트 (Ba, La)Co2Fe24O41계의 결정구조와 미세구조 (Crystal structure and microstructure of Z-type hexaferrite (Ba, La)Co2Fe24O41 by molten salt synthesis)

  • 이도혁;권채연;문경석
    • 한국결정성장학회지
    • /
    • 제31권5호
    • /
    • pp.197-202
    • /
    • 2021
  • Z형 육방정 페라이트인 Ba3Co2Fe24O41(Ba3Z)와 Ba1.5La1.5Co2Fe24O41(Ba1.5La1.5Z) 분말을 1차 하소 후 용융염 합성법을 통해 합성하였다. Ba3Z의 경우, 1000℃에서 하소한 결과 M형 육방정 페라이트와 Y형 육방정 페라이트가 합성되었으며, 이후 1150℃와 1200℃에서 소결했을 때 Z형 육방정 페라이트를 얻을 수 있었다. 하지만 Ba1.5La1.5Z의 경우 1000℃에서 하소하였을 때 M형 육방정 페라이트와 CoFe2O4(Spinel 상) 그리고 LaFeO3으로 합성되었으며, Z형 육방정 페라이트는 용융염 합성 과정에서 합성되지 않았다. 또한 입자 형상의 종횡비는 용융염 합성 시 소결온도가 증가함에 따라 감소하는 경향을 보였다. 따라서 높은 종횡비를 갖는 단상의 Ba1.5La1.5Z를 합성하기 위해서는 용융염 합성 전 1차 하소 온도가 Spinel 상이 형성되는 온도보다 낮아야 될 것으로 판단된다.

프랙탈을 이용한 ZnO 바리스터 표면 구조 및 전기적 특성 (The Structure and Electrical Characteristics of ZnO Varistors Surface using-Fractal)

  • 오수홍;홍경진;이진;이준웅;김태성
    • 한국전기전자재료학회논문지
    • /
    • 제13권10호
    • /
    • pp.834-839
    • /
    • 2000
  • The structural properties that SEM photograph of ZnO varistors surface studied by fractal mathematics program were investigated to verify the relations of electrical characteristics. The SEM photograph of ZnO varistors surface were changed by binary code and the grain shape of that were analyzed by fractal dimension. The void of ZnO varistors surface was found by fractal program. The relation between grain density and electrical properties depend on fractal dimension. The grain size in ZnO varistors surface was decreased by increasing of Sb$_2$O$_3$ addition. The spinel structure was formed by Sb$_2$O$_3$addition and it was depressed the ZnO grain formation. The grain size of ZnO by Sb$_2$O$_3$addition were from 5 to 10[${\mu}{\textrm}{m}$]. Among of ZnO varistors, fractal dimension of ZnO4 was very high as a 1.764. The density of grain boundary in ZnO2 and ZnO3 varistors surface was 15[%] by formed spinal structure. The breakdown electric field of ZnO2 that fractal dimension has 1.752 was very high to be 8.5[kV/cm]. When the fractal dimensin was high, the grain shape of ZnO varistors was complex and the serial layers of ZnO grain was increased.

  • PDF

반응성 때려내기 방법에 의한 스피넬 형 ZnCo2O4 박막의 성장과 전기적 물성 (Growth and Electrical Properties of Spinel-type ZnCo2O4 Thin Films by Reactive Magnetron Sputtering)

  • 송인창;김현중;심재호;김효진;김도진;임영언;주웅길
    • 한국재료학회지
    • /
    • 제13권8호
    • /
    • pp.519-523
    • /
    • 2003
  • We report the synthesis of cubic spinel $ZnCo_2$$O_4$thin films and the tunability of the conduction type by control of the oxygen partial pressure ratio. Zinc cobalt oxide films were grown on$ SiO_2$(200 nm)/Si substrates by reactive magnetron sputtering method using Zn and Co metal targets in a mixed Ar/$O_2$atmosphere. We found from X-ray diffraction measurements that the crystal structure of the zinc cobalt oxide films grown under an oxygen-rich condition (the $O_2$/Ar partial pressure ratio of 9/1) changes from wurtzite-type $Zn_{1-x}$ $Co_{X}$O to spinel-type $ZnCo_2$$O_4$with the increase of the Co/Zn sputtering ratio,$ D_{co}$ $D_{zn}$ . We noted that the above structural change accompanied by the variation of the majority electrical conduction type from n-type (electrons) to p-type (holes). For a fixed $D_{co}$ $D_{zn}$ / of 2.0 yielding homogeneous spinel-type $_2$O$ZnCo_4$films, the type of the majority carriers also varied, depending on the$ O_2$/Ar partial pressure ratio: p-type for an $O_2$-rich and n-type for an Ar-rich atmosphere. The maximum electron and hole concentrations for the Zn $Co_2$ $O_4$films were found to be 1.37${\times}$10$^{20}$ c $m^{-3}$ and 2.41${\times}$10$^{20}$ c $m^{-3}$ , respectively, with a mobility of about 0.2 $\textrm{cm}^2$/Vs and a high conductivity of about 1.8 Ω/$cm^{-1}$ /.

스핀 스프레이 법으로 제조한 망가나이트 박막의 전기적 특성 (Electrical Properties of Manganite Thin Films Prepared by Spin Spray Method)

  • 전창준;정영훈;윤지선;박운익;백종후;홍연우;조정호
    • 한국전기전자재료학회논문지
    • /
    • 제30권1호
    • /
    • pp.17-22
    • /
    • 2017
  • Effects of pH value and deposition time on the electrical properties of (NMC) Ni-Mn-Cu-O and (NMCC) Ni-Mn-Cu-Co-O thin films were investigated. The NMC and NMCC films were prepared by spin spray method. The crystal structure and thickness of the annealed films were changed by the pH value and deposition time, respectively. A single phase of cubic spinel structure was confirmed for the annealed films deposited from solutions with pH 7.6. The resistivity of the annealed films was affected by the crystal structure and microstructure. The TCR (temperature coefficient of resistance) was dependent on the $Mn^{3+}/Mn^{4+}$. Typically, the resistivity of $70.5{\Omega}{\cdot}cm$ and TCR of -3.56%/K at room temperature were obtained for NMCC films deposited from solutions with pH 7.6 for 5 min, and annealed at $450^{\circ}C$ for 3 h.