• Title/Summary/Keyword: spinel $LiMn_2O_4$

Search Result 108, Processing Time 0.027 seconds

Electrochemical Properties of Spinel $LiMn_2O_4$Synthesized at Various Sintering Condition (열처리 조건에 따른 스피넬 $LiMn_2O_4$의 전기 화학적 특성)

  • 한태희;박종광;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 1999
  • We have investigated the $LiMn_2O_4$system as an cathode material for lithium rechargeable batteries. $LiMn_2O_4$spinel oxides have been synthesized by a solid state methode. We varied sintering time at a fixed sintering temperature of 75$0^{\circ}C$. In order to investigate the electrochemical properties of prepared $LiMn_2O_4$we assembled three-electrode cells using the working electrode as active material and Li metal as the counter and reference electrodes. The electrolyte was 1 M LiPE$_{6}$-EC:DEC(1:1 by volume). The particle size of sample synthesized at 75$0^{\circ}C$ ranged about 60$\mu m$. The discharge capacity of a cell involving spinel $LiMn_2O_4$ increased with increasing sintering time.e.

  • PDF

Hydrothermal Synthesis of Li-Mn Spinel Nanoparticle from K-Birnessite and Its Electrochemical Characteristics (K-Birnessite를 이용한 Li-Mn Spinel 나노입자 합성 및 전기화학적 특성 평가)

  • Kim, Jun-Il;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Sun, Yang-Kook
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.590-592
    • /
    • 2010
  • Li-Mn spinel ($LiMn_2O_4$) is prepared by a hydrothermal process with K-Birnessite ($KMnO_4{\cdot}yH_2O$) as a precursor. The K-Birnessite obtained via a hydrothermal process with potassium permanganate [$KMnO_4$] and urea [$CO(NH_2)_2$] as starting materials are converted to Li-Mn spinel nanoparticles reacting with LiOH. The molar ratio of LiOH/K-Birnessite is adjusted in order to find the effect of the ratio on the structural, morphological and electrochemical performances of the Li-Mn spinel. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetry (TG) are used to investigate the crystal structure and morphology of the samples. Galvanostatic charge and discharge are carried out to measure the capacity and rate capability of the Li-Mn spinel. The capacity shows a maximum value of $117\;mAhg^{-1}$ when the molar ratio of LiOH/K-Birnessite is 0.8 and decreases with the increase of the ratio. However the rate capability is improved with the increase of the ratio due to the reduction of the particle size.

An Overview of Chemically/Surface Modified Cubic Spinel LiMn2O4 Electrode for Rechargeable Lithium Batteries

  • Jung, Kyu-Nam;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.158-169
    • /
    • 2006
  • The present article is concerned with the overview of the chemically/surface modified cubic spinel $LiMn_2O_4$ as a cathode electrode far lithium ion secondary batteries. Firstly, this article presented a comprehensive survey of the cubic spinel structure and its correlated electrochemical behaviour of $LiMn_2O_4$. Subsequently, the various kinds of the chemically/surface modified $LiMn_2O_4$ and their electrochemical characteristics were discussed in detail. Finally, this article reviewed our recent research works published on the mechanism of lithium transport through the chemically/surface modified $Li_{1-\delta}Mn_2O_4$ electrode from the kinetic view point by the analyses of the experimental potentiostatic current transients and ac-impedance spectra.

Synthesis of One-dimensional Spinel LiMn2O4 Nanostructures as a Positive Electrode in Lithium Ion Battery

  • Lee, Hyun-Wook;Muralidharan, P.;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.379-383
    • /
    • 2011
  • This paper presents the synthesis of one-dimensional spinel $LiMn_2O_4$ nanostructures using a facile and scalable two-step process. $LiMn_2O_4$ nanorods with average diameter of 100 nm and length of 1.5 ${\mu}m$ have been prepared by solid-state lithiation of hydrothermally synthesized ${\beta}$-$MnO_2$ nanorods. $LiMn_2O_4$ nanowires with diameter of 10 nm and length of several micrometers have been fabricated via solid-state lithiation of ${\beta}$-$MnO_2$ nanowires. The precursors have been lithiated with LiOH and reaction temperature and pressure have been controlled. The complete structural transformation to cubic phase and the maintenance of 1-D nanostructure morphology have been evaluated by XRD, SEM, and TEM analysis. The size distribution of the spinel $LiMn_2O_4$ nanorods/wires has been similar to the $MnO_2$ precursors. By control of reaction pressure, cubic 1-D spinel $LiMn_2O_4$ nanostructures have been fabricated from tetragonal $MnO_2$ precursors even below $500^{\circ}C$.

Electrochemical Properties of Spinel $LiMn_2O_4$ Synthesized at Various Heat Treatment for Lithium lon Battery (리튬 이온 전지용 스피넬 $LiMn_2O_4$의 열처리 온도에 따른 전기 화학적 특성)

  • Han, Tae-Hee;Min, Hyung-Sik;Han, Byoung-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.179-184
    • /
    • 1999
  • In the past ten years, $LiMn_2O_4$-based spinels have been extensively studied as positive electrode materials for lithium-ion batteries. To improve the cycle performance of spinel $LiMn_2O_4$ as the cathode of 4V class lithium secondary batteries, spinel phases $LiMn_2O_4$ were prepared at various temperatures ranging form 600-900$^{\cire}C$ in air. The results showed that charge.dischare capacity of $LiMn_2O_4$ varied at 1st temperature from $200^{\circ}C to 600^{\circ}C$ increase with increasing temperature. $LiMn_2O_4$ synthesized at 2nd temperature $750^{\circ}C$excellent charge.discharge capacity, efficiency and cyclability compared to the samplesynthesized different temperatures. The value of lst charge.discharge capacity was 121mAh/g, 118mAh/g, Also, the efficiency value was about 97%.

  • PDF

Properties Changing depends on Substituents or Dopants of Li-Mn oxide material (Li-Mn계 산화물의 치환 및 첨가에 따른 물성 변화)

  • Lee, Dae-Jin;Ji, Mi-Jung;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.289-289
    • /
    • 2007
  • Spinel structured $LiMn_2O_4$ is more economic and environmental friendly to be used as commercial active material for secondary battery compared to Co-oxide material active material, but spinel structure of $LiMn_2O_4$ is unstable and its capacitance decreases with increase of cycle. Therefore, the purpose of our sturdy is to improve the stability of $LiMn_2O_4$ spinel structure and increase its capacitance by using substituents or dopants. $LiMn_2O_4$ powder was synthesized by charging substituents or dopants mole fractions, and temperatures. Crystal state, structure and specific surface area of the synthesized powder were measured and also characteried electrochemically by measuring its impedance, charge-discharge capacitance and etc.

  • PDF

Fabrication and Characterization of ${LiMn_2}{O_4}$ Cathode for Lithium Rechargeable Battery by R.F.Magnetron Sputtering (R.F. Magnetron Sputtering을 이용한 리튬이차전지 정극용 ${LiMn_2}{O_4}$의 제조 및 특성)

  • 우태욱;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.552-558
    • /
    • 2000
  • LiMn2O4 thin fiolm cathodes for Li-ion secondary battery were fabricated by r.f. magnetron sputtering technique. As-deposited films were amorphous. A spinel structure could not be obtained LiMn2O4 films by in-situ thermal annealing. After post thermal annealing over $700^{\circ}C$ in oxygen atmosphere, LiMn2O4 films prepared above 100 W r.f. power could be crystallized into a spinel structure. The electrochemical property of the LiMn2O4 film cathodes was tested in a Li/1 M LiClO4 in PC/LiMn2O4 cell. From cyclic voltammetry at scan rate of 2mV/sec of 2.5~4.5V, LiMn2O4 electrode prepared by post annealing at 75$0^{\circ}C$ showed good initial capacity. LiMn2O4 electrode prepared by post annealing at 80$0^{\circ}C$ showed the best crycling performance.

  • PDF

Effects of Reaction Parameters on the Preparation of LiMn2O4 for Lithium-Ion Batteries by SHS (리튬이온전지용 LiMn2O4분말의 자전연소합성시 반응변수의 영향)

  • Jang, Chang-Hyun;Nersisyan Hayk;Won, Chang-Whan;Kwon, Hyuk-Sang
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.588-593
    • /
    • 2006
  • Spinel phase $LiMn_2O_4$ is of great interest as cathode materials for lithium-ion batteries. In this study, SHS (Self propagating High-temperature Synthesis) method to synthesize spinel $LiMn_2O_4$ directly from lithium nitrate, manganese oxide, manganese and sodium chloride were investigated. The influence of Li/Mn ratio, the heat-treated condition of product have been explored. The resultant $LiMn_2O_4$ synthesized under the optimum synthesis conditions shows perfect spinel structure, uniform particle size and excellent electrochemical performances.

Synthesis of Spinel Phase ${LiMn_2}{O_4}$ and its Activation by Hydrogen Reduction (스피넬상 ${LiMn_2}{O_4}$의 합성과 수소환원에 의한 활성화)

  • 이동석;류대선;임병오;이풍헌
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.564-568
    • /
    • 2000
  • Spinel LiMn2O4 catalyst with submicron and single phase particles was synthesized at 48$0^{\circ}C$ for 12 hr in air by a sol-gel method. The spinel LiMn2O4 was deoxidized by hydrogen at various temperatures. Effects of physiochemical properties of the catalyst reduced by hydrogen were examined with X-ray diffractometer, thermogravimetric analysis and scanning electron microscope. The decomposition rate of carbon dioxide was measrued using the catalyst deosidized at 35$0^{\circ}C$.

  • PDF

Charge.discharge characteristics of cathode for Li rechargeable batteries (리튬 2차전지용 $LiMn_2O_4$ 양극의 충.방전 특성)

  • Han, Tae-Hee;Lim, Sung-Hun;Cho, Dong-Eon;Choi, Myung-Ho;Kang, Hyeong-Gon;Han, Byung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1462-1464
    • /
    • 1997
  • The spinel $LiMn_2O_4$ has been synthesized by solid-state reaction. $LiMn_2O_4$ which includes 3 mix $Li_2CO_3$ or $LiNO_3$ and $MnO_2$ prepared by Prelim heating at $350^{\circ}C$ for 24hr. $LiMn_2O_4$ fired at temp range from $600^{\circ}C$ to $800^{\circ}C$ for 48hr. The structure a electrochemical characteristics of spinel $LiMn_2O_2$ wh fabricated by changing sintering condition from st materials are investigated. The spinel $LiMn_2O_4$ prepared by the mixture of L CMD at $800^{\circ}C$ for 48hr showed an initial charge ca of 146mAh/g. The spinel $LiMn_2O_4$ prepared by the m of $LiNO_3$/CMD at $600{\sim}800^{\circ}C$ for 48hr stabilized ch discharge capacity after 50th cycles.

  • PDF