• Title/Summary/Keyword: spinel

Search Result 715, Processing Time 0.03 seconds

Phlogopite-Bearing Orthopyroxenite in Andong Ultramafic Complex (안동 초염기성암 복합체의 함금운모 사방휘석암)

  • Jeong, Gi Young;Lee, Seung Ryeol;Kwon, Seok-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.249-261
    • /
    • 2012
  • Phlogopite-bearing orthopyroxenite occurs in Andong ultramafic complex in a planar body of about 1 meter thick, and consists mostly of coarse subhedral to euhedral orthopyroxene crystals. Minor minerals are clinopyroxene, phlogopite, and plagioclase with trace chromian spinel, pentlandite, apatite, and zircon. Clinopyroxene occurs as either exolution lamella or interstitial fillings with phlogopite and plagioclase. Electron microprobe analysis showed that orthopyroxenes are entatite, while clinopyroxenes are diopside with little chemical variation through samples. Hydrous alteration resulted in the formation of talc, amphibole, and serpentine from orthopyroxene, clinopyroxene, and plagioclase, respectively. The orthopyroxenite was probably formed by the fractional crystallization of the ultramafic magma. Radiogenic dating of phlogopite and zircon of the orthopyroxenite would reveal the age of the Andong ultramafic complex.

Study on Effects of Ni/Al2O3 Catalysts Added with Mo on Durability Improvement in Steam Reforming Reactions (Mo를 첨가한 Ni/Al2O3 촉매의 수증기 개질반응에서의 내구성 증진 특성연구)

  • Won, Jong Min;Park, Gi Woo;Lee, Jin Woo;Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.560-567
    • /
    • 2016
  • In this study, we characterized steam reforming reactions and surface of $Ni/Al_2O_3$ catalysts. Ni-Mo based catalysts were prepared by loading Mo as the co-catalyst and reaction activities of the Ni-Mo based catalysts were compared with those of Ni-based catalysts. Through the $H_2$-TPR and XPS analysis it was confirmed that this characteristic efficiency. $O_2$-TPO analysis was performed to examine the deposition characteristics, bonding structures and evaporation characteristics of carbon deposited on the surface of catalysts after long run experiments were performed for steam reforming reactions. As the results, it was found that durability was improved in Ni-Mo based catalysts inhibiting formation of graphitic carbon species which reduced reaction activities of the catalysts by strongly interacting with Ni in the steam reforming reaction.

A STUDY ON FRACTURE STRENGTH OF CONVENTIONAL AND COPY-MILLED IN-CERAM CROWNS (Copy-milled Celay In-Ceram 전부도재관의 파절강도에 관한 연구)

  • Hwang, Jung-Won;Yang, Jae-Ho;Lee, Sun-Hyung;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.417-430
    • /
    • 1997
  • The purpose of this study was to compare the fracture resistance of copy-milled and conventional In-Ceram crown. Four groups of ten uniform sized all-ceramic crowns were fabricated. In-Ceram Spinell and In-Ceram Alumina crowns were fabricated as control group, Celay In-Ceram Spinell and Celay In-Ceram Alumina crowns were fabricated as test group. All specimen were cemented on stainless steel master die with resin cement, and stored in $37^{\circ}C$ water for 1 day prior to loading in Instron testing machine. Using a steel ball at a crosshead surfed of 0.5mm/min, the crowns were loaded at $30^{\circ}C$ angle until catastrophic failure occurred. The results obtained were as follows : 1. With the value of $984.8N{\pm}103.67N$, the strength of Celay In-Ceram Alumina crowns had a significantly higher fracture strength than conventional In-Ceram Alumina crowns ($876.2N{\pm}92.20N$) (P<0.05) 2. The fracture strength of Celay In-Ceram Spinell crowns($706.3{\pm}70.59N$) was greater than that of conventional In-Ceram Spinell crowns($687.4{\pm}90.26N$), but there was no significant difference(P>0.05). 3. The In-Ceram Alumina crowns had a significantly higher fracture strength than In-Ceram Spinell crowns in both methods(P<0.05). 4. Ther order of fracture strength was as followed : Celay In-Ceram Alumina, In-Ceram Alumina, Celay In-Ceram Spinell and In-Ceram Spinell crowns

  • PDF

The Effects of K-Addition and the Catalytic Dehydrogenation of Ethylbenzene on Ferrite Catalysts (페라이트 촉매의 K 첨가효과와 에틸벤젠의 탈수소반응)

  • Kim, Ki-Chul;Lee, Gun Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.722-729
    • /
    • 1992
  • Mg-and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituently single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, DTA, XPS, TEM and TPD methods were employed. Potassium added to the catalyst played a role of bifunctional promoter which brought the electronic effect as well as the structural one for the increment of particle dispersion. K-addition decreased acid strength of the catalyst by neutralization and increased its acidity. In the dehydrogenation of ethylbenzene, K-addition let the selectivity to styrene be constant throughout the reaction by the proper acid strength of the ferrite for the reaction, which could be obtained from the neutralization of strong acid sites by potassium.

  • PDF

Effect of the imported bituminous coal and the domestic anthracite coal mixed with petroleum coke (석유코크스와 혼합된 국내무연탄과 수입유연탄 슬래그의 특성 규명)

  • Kim, Min-Kyung;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.230-233
    • /
    • 2008
  • The vanadium rich ash of petroleum coke can give a slagging problem during because of the high melting point of $V_2O_3$. For continuous removal of the slag, petroleum coke is often mixed with coal, and the viscosity of the mixed slag is an important property, determining the gasification temperature. The viscosities of the mixed slag from various mixing ratios of petroleum coke and a bituminous coal were investigated. When mixed with a crystalline coal slag, $T_{cv}$ was increased at a higher the coke content in the mixed feed. When the $V_2O_3$ concentration was greater than 4.5%, it was difficult to get accurate measurements of $T_{cv}$. The SEM/EDX analyses of the cooled slag revealed that the major crystalline phase was anorthite, and $T_{cv}$ should be related to the formation temperature of anorthite. The SEM/EDX analyses also showed that, at low concentrations of vanadium, part vanadium formed a crystalline phase with Al-Si-Ca-Fe, and the rest remained in the glassy phase, suggesting that vanadium existed as a slag component at the low viscosity region. At a high concentration, vanadium forms a phase with Ca, and the Ca-V phase was separated from the slag phase, and formed a layer above the slag. FeO in petroleum coke also played an important role determining viscosity: at high temperatures, increased FeO lowered the viscosity, but as it formed a spinel phase, the depletion of FeO in the slag resulted in a higher viscosity.

  • PDF

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

Effect of Al Alloy Content on Processing of Reaction-Bonded Al2O3 Ceramics Using Al Alloy Powder

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.215-220
    • /
    • 2015
  • The effect of Al content on the processing of reaction-bonded $Al_2O_3$ (RBAO) ceramics using 40v/o ~ 80v/o Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processes that use ~ 40v/o pure Al powder. The influence of high Al content in starting $Al_2O_3$-Al alloy powder mixtures on its particulate characteristics, reaction-bonding, microstructure, physical and mechanical properties was revealed. Starting $Al_2O_3$-Al alloy powder mixtures with 40v/o ~ 80v/o Al alloy powder were milled, reaction-bonded, post-sintered, and characterized. With an increasing Al alloy content, the milling efficiency of Al alloy powder was lowered, resulting in a larger particle size after milling. However, in spite of the larger particle size of Al alloy powder, the oxidation, i.e., reaction-bonding, of the Al alloy was successfully completed via solid and liquid state oxidation, in which the activation energy of the oxidation was nearly the same regardless of Al alloy content. After reaction-bonding and post-sintering at $1600^{\circ}C$, RBAO ceramics from 80v/o Al alloy content showed a relative density of ~97% and a flexural strength of 251 MPa compared to ~ 96% and 353 MPa for RBAO ceramics from 40v/o Al alloy content, respectively. The lower flexural strength at 80v/o Al alloy content was due to the weak spinel phase that formed from Zn, Mg alloying elements in Al.

The Fatigue Behavior of Mechanically Alloyed Al-4Mg Alloys Dispersed with Oxide Particles (기계적합금화된 분산형 Al-4Mg기 합금의 피로거동)

  • Pyun, J.W.;Cho, J.S.;Kwun, S.I.;Jo, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.237-242
    • /
    • 1993
  • The fatigue behaviors of mechanically alloyed Al-4Mg alloys dispersed with either $Al_2O_3$ or $MgAl_2O_4$ oxide particles were investigated. This study maily concerned with the role of coherency of dispersed particles with the matrix on the fatigue behavior of the alloys. The $MgAl_2O_4$ which has a spinel structure with the lattice parameter of exactly the twice of Al showed the habit relation with the matrix. The mechanically alloyed Al-4Mg alloys showed stable stress responses with fatigue cycles from start to failure regadless of strain amplitudes and of existence of dispersoids. The Al-4Mg alloy dispersed with $MgAl_2O_4$ showed not only the better static mechanical properties but also the better low cycle fatigue resistance than that with $Al_2O_3$, i.e., much higher plastic strain energy dissipated to failure, at low strain amplitude. However, this alloy showed inferior fatigue resistance to that dispersed with $Al_2O_3$ or that without dispersion at high strain amplitude. These results imply that $MgAl_2O_4$ may promote lowering the stacking fault energy of the alloy inherited from the coherency with the matrix so that dislocations shuttle back and forth on the same slip plane without cross slipping to other planes during fatigue at low strain amplitude resulting in long fatigue life.

  • PDF

Effect of Pressure on the Magnetic Properties of Magnetite Nanoparticles Synthesized Using a High Pressure Homogenizer (고압 균질기의 압력이 마그네타이트 나노입자의 자기 특성에 미치는 영향)

  • Ji, Sung Hwa;Kim, Hyun Hyo;Kim, Hyojin
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.190-195
    • /
    • 2016
  • We report the effect of pressure varying from 0 to 1500 bar on the magnetic properties of magnetite nanoparticles synthesized from $Fe(OH)_2$ suspension using a high pressure homogenizer without any dispersing agent and oxidant. The observed X-ray diffraction (XRD) patterns showed that all the synthesized nanoparticles had the inverse spinel structure of magnetite. It was found from transmission electron microscopy (TEM) and XRD analysis that the average size of the synthesized magnetite particles could be controlled by the pressure of the high pressure homogenizer. The average particle size was found to range from 21 to 26 nm and decrease with increasing pressure. Magnetic hysteresis measurements performed at room temperature using a vibrating sample magnetometer (VSM) revealed the appearance of a superparamagnetic behavior in the magnetite nanoparticles synthesized at a pressure of 1500 bar.

$SO_3$ Decomposition Catalysis in SI Cycle to to Produce Hydrogen (SI 원자력 수소생산을 위한 $SO_3$ 분해반응촉매에 관한 연구)

  • Kim, Tae-Ho;Shin, Chae-Ho;Joo, Oh-Shim;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • Fe, Ni and Co, typical active components, were dispersed on $Al_2O_3$ and $TiO_2$ for $SO_3$ decomposition. $SO_3$ decomposition was conducted at the temperature ranges from $750^{\circ}C$ to $950^{\circ}C$ using the prepared catalysts. Alumina based catalysts showed the surface areas higher than Titania based catalysts, which resulted from spinel structure formation of alumina based catalysts. Catalytic $SO_3$ decomposition reaction rates were in the order of Fe>Co${\gg}$Ni. The metal sulfate decomposition temperature were in the order of Ni>Co>Fe from TGA/DTA analysis of metal sulfate. During $SO_3$ decomposition, metal sulfate can form on the catalysts. $SO_2$ and $O_2$ can be produced from the decomposition of metal sulfate. In that point of view, the less is the metal sulfate deomposition temperature, the higher can be the $SO_3$ decomposition activity of the metal component. Therefore, it can be concluded that metal component with the low metal sulfate decomposition temperature is the pre-requisite condition of the catalysts for $SO_3$ decomposition reaction.