Browse > Article
http://dx.doi.org/10.4283/JKMS.2016.26.6.190

Effect of Pressure on the Magnetic Properties of Magnetite Nanoparticles Synthesized Using a High Pressure Homogenizer  

Ji, Sung Hwa (Department of Research & Development, ILSHINAUTOCLAVE CO.)
Kim, Hyun Hyo (Department of Research & Development, ILSHINAUTOCLAVE CO.)
Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
Abstract
We report the effect of pressure varying from 0 to 1500 bar on the magnetic properties of magnetite nanoparticles synthesized from $Fe(OH)_2$ suspension using a high pressure homogenizer without any dispersing agent and oxidant. The observed X-ray diffraction (XRD) patterns showed that all the synthesized nanoparticles had the inverse spinel structure of magnetite. It was found from transmission electron microscopy (TEM) and XRD analysis that the average size of the synthesized magnetite particles could be controlled by the pressure of the high pressure homogenizer. The average particle size was found to range from 21 to 26 nm and decrease with increasing pressure. Magnetic hysteresis measurements performed at room temperature using a vibrating sample magnetometer (VSM) revealed the appearance of a superparamagnetic behavior in the magnetite nanoparticles synthesized at a pressure of 1500 bar.
Keywords
magnetite; nanoparticle; superparamagetism; high pressure homogenizer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. H. Kim, Y. K. Ahn, and H. S. Lee, J. Alloys Compd. 434, 633 (2007).
2 M. Arruebo, R. Fernandez-Pacheco, M. R. Ibarra, and J. Santamaria, Nanotoday 2, 22 (2007).
3 A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, J. Biosci. Bioeng. 100, 1 (2005).   DOI
4 J. H. Cho, S. G. Ko, Y. K. Ahn, K. C. Song, and E. J. Choi, J. Nanosci. Nanotechnol. 9, 779 (2009).   DOI
5 D. S. Mathew and R.-S. Juang, Chem. Eng. J. 129, 51 (2007).   DOI
6 E. J. Choi, Y. K. Ahn, and E. J. Hahn, J. Korean Phys. Soc. 53, 2090 (2008).   DOI
7 A. H. Morrish and S. P. Yu, J. Appl. Phys. 26, 1049 (1955).   DOI
8 H. Yan, J. Zhang, C. You, Z. Song, B. Yu, and Y. Shen, Mater. Chem. Phys. 113, 46 (2009).   DOI
9 J. Murbe, A. Rechtenbach, and J. Topfer, Mater. Chem. Phys. 110, 426 (2008).   DOI
10 R. Y. Hong, T. T. Pan, and H. Z. Li, J. Magn. Magn. Mater. 303, 60 (2006).   DOI
11 Y. J. Suh, D. S. Kil, K. S. Chung, H. S. Lee, and H. Shao, J. Magn. 13, 106 (2008).   DOI
12 K. Burapapadh, H. Takeuchi, and P. Sriamornsak, Adv. Mater. Res. 506, 286 (2012).   DOI
13 J. H. Cho, T. Y. Kim, H. Y. Yun, and H. H. Kim, Am. J. Res. Comm. 2, 168 (2014).
14 S. Krehula and S. Music, Croat. Chem. Acta 80, 517 (2007).
15 Q. Shou, J. Cheng, L. Zhang, B. J. Nelson, and X. Zhang, J. Solid State Chem. 185, 191 (2012).   DOI
16 R. Ahmadi, M. Malek, H. R. M. Hosseini, M. A. Shokrgozar, M. A. Oghabian, A. Masoudi, N. Gu, and Y. Zhang, Mater. Chem. Phys. 131, 170 (2011).   DOI
17 J. Chen, F. Wang, K. Huang, Y. Liu, and S. Liu, J. Alloys Compd. 475, 898 (2009).   DOI
18 M. C. Mascolo, Y. Pei, and T. A. Ring, Materials 6, 5549 (2013).   DOI
19 Z. Tang and L. Shi, Eclet. Quim 33, 15 (2008).   DOI
20 S. W. Lee, J.-G. Lee, K. P. Chae, and S. Y. An, J. Korean Magn. Soc. 20, 196 (2010).   DOI
21 X. Wen, J. Yang, B. He, and Z. Gu, Curr. Appl. Phys. 8, 535 (2008).   DOI
22 Y. K. Ahn, E. J. Choi, S. Kim, and H. N. Ok, Mater. Lett. 50, 47 (2001).   DOI