• Title/Summary/Keyword: spindle-drive

Search Result 128, Processing Time 0.027 seconds

Indirect Measurement of Auto Screw Drive's Torque Using Current Signals of DC Motor (DC 모터 전류 신호를 이용한 자동나사체결기 토크의 간접측정)

  • 이정윤;이정우;이준호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • The main objective of the research is to Propose an algorithm that to estimate the screwing torque from parameters of DC motor current without using any stain gage and torque cell. The auto screw drive system is divided into two parts, one is the DC motor ind the other is mechanical part in which the friction torque and damping ratio are a function of rotational of spindle electro motive force constant. The torque is estimated from the friction torque. The research is concerned with applying the method to an auto screw drive and the advantages and limitations are also discussed in this paper.

The Measurement of the Bearing Stiffness (베어링 강성 측정)

  • Kim, Sang-Uk;Kim, Jin-Hwan;Kim, Yong-Geun;Kim, Bo-Youl;Kim, Young-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.216-220
    • /
    • 2006
  • This paper is presented for the measurement of the bearing stiffness for the spindle motors. BLDC Spindle Motors for the Hard Disk Drive are used by several kinds of the bearings, such as ball bearing, fluid dynamic bearing, and aero dynamic bearing. The spindle motors are attached the platters to read and write the data. Because the platter rotates at high end speed with the load and can be shocked from a suddenly moving, the bearing needs the rated stiffness with the pressure. By the way, it has not been realized to measure the real stiffness for each bearing types. In this paper, we proposed the method of measuring the stiffness for the bearings by using the magnet force. Experimental results show the performance to measure the bearing stiffness of the BLDC spindle motors for an HDD.

  • PDF

Dynamics of a HDD spindle system due to the change of FDBs (유체베어링의 설계변화에 따른 HDD 스핀들 시스템의 동특성 해석)

  • Park, Ki-Yong;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.407-413
    • /
    • 2008
  • This paper investigates the dynamics of a HDD spindle system due to the change of FDBs. Flying height of the HDD spindle system is determined through the static analysis of the FDBs, and the stiffness and damping coefficients are calculated through the dynamic analysis of the FDBs. Free vibration characteristics and shock response of the HDD spindle system are analyzed by using the finite element method and the mode superposition method. Experimental modal test is also performed to verify the accuracy of the proposed method. This research shows that the stiffness coefficients of journal heating mostly affect the rocking frequencies because their magnitude are within the range of the stiffness of supporting structure. It also shows that the damping coefficients of thrust bearing mostly affect the axial frequency because the stiffness of thrust bearing is much smaller that that of supporting structure.

  • PDF

Finite Element Analysis of a Coupled Hydrodynamic Journal and Thrust Bearing in a Computer Hard Disk Drive (컴퓨터 하드디스크 드라이브에 사용되는 저널과 스러스트가 연성된 유체 동압 베어링의 유한 요소 해석)

  • Kim, Hakwoon;Lee, Sanghoon;Jang, Gunhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.87-95
    • /
    • 2005
  • This paper proposes a method to calculate the characteristics of a coupled hydrodynamic journal and thrust bearing of a HDD spindle motor. The governing equations for the journal and thrust bearings are the two dimensional Reynolds equations in $\theta z$ and $ r\theta$ planes, respectively. Finite element method is appropriately applied to analyze the coupled journal and thrust bearing by satisfying the continuity of mass and pressure at the interface between the journal and thrust bearings. The pressure in a coupled bearing is calculated by applying the Reynolds boundary condition and compared with that by using the Half-Sommerfeld boundary condition. The static characteristics are obtained by integrating the pressure along the fluid film. The flying height of spindle motor is measured to verify the proposed analytical result. This research shows that the proposed method can describe HDB in a HDD system more accurately and realistically than the separate analysis of a journal or thrust bearing.

Modeling and Dynamic Analysis of Electromechanical System in Machine Tools (1$^{st}$ Report) - Gain Tuning of PI Speed Controller - (공장기계 시스템의 모델링과 동적특성 분석 (제1보) - PI 속도 제어기의 제어이득 설정 -)

  • Park, Yong-Hwan;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.265-271
    • /
    • 1999
  • In the feed drive systems or the spindle systems of machine tools that consist of many mechanical components, a torsional vibration is often generated because of its elastic elements in torque transmission-Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed m1d spindle system. In this paper, based on the DC motor model, a model of electro-drive system with motor has been developed and an optimal criterion for tuning the gain of speed controller is discussed. The frequency bandwidth of the system and the damping ratio in time domain are optimal design specifications for the gain adjustment speed controller. The gains of PI speed controller are then derived from the bandwidth and damping ratio, and those relationships have been classified.

  • PDF

Finite Element Analysis of a Coupled Hydrodynamic Journal and Thrust Bearing in a Computer Hard Disk Drive (컴퓨터 하드디스크 드라이브에 사용되는 저널과 스러스트가 연성된 유체 동압 베어링의 유한 요소 해석)

  • Kim, Hak-Woon;Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.846-852
    • /
    • 2004
  • This paper proposes a method to calculate the characteristics of a coupled hydrodynamic journal and thrust bearing of a HDD spindle motor. The governing equations for the journal and thrust bearings are the two dimensional Reynolds equations in ${\theta}z$ and $r\theta$ planes, respectively. Finite element method is appropriately applied to analyze the coupled journal and thrust bearing by satisfying the continuity of mass and pressure at the interface between the journal and thrust bearings. The pressure in a coupled bearing is calculated by applying the Reynolds boundary condition and compared with that by using the Half-Sommerfeld boundary condition. The static characteristics are obtained by integrating the pressure along the fluid film. The flying height of spindle motor is measured to verify the proposed analytical result. This research shows that the proposed method can describe HDB in a HDD system more accurately and realistically than the separate analysis of a journal or thrust bearing.

  • PDF

Development of Performance Evaluation System for Hydrodynamic Bearing in Hard Disk Drive (초소형 HDD용 유체 동압베어링의 동적 성능평가 시스템)

  • Park, S.J.;Lee, H.W.;Song, J.R.;Lee, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.66-68
    • /
    • 2009
  • Most hard disk spindles currently used are supported by oil lubricated hydrodynamic bearings. However, in the trend of increasing spindle speed and reducing size and cost, dynamic behaviors of the bearing such as RRO and NRRO are more important. A novel system evaluating dynamic behavior of hydrodynamic bearings in had disk drive was developed to analyze the effect of groove shapes and parameters.

  • PDF

A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool (복합공작기계의 이송계 운동정밀도 측정의 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.112-118
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF

A Study on the Measurement of Motion Accuracy for Feed Drive System of Multi-task Machine Tool (복합공작기계의 이송계 운동정밀도 측정의 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.31-37
    • /
    • 2007
  • Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.

  • PDF