• Title/Summary/Keyword: spinal segment motion

Search Result 50, Processing Time 0.026 seconds

Effects of Transversus Abdominal Muscle Stabilization Exercise to Spinal Segment Motion on Trunk Flexion-Extension (복횡근 강화운동이 체간 신전-굴곡 시 척추 분절 운동에 미치는 영향)

  • Kim, Suhn-Yeop;Baek, In-Hyeub
    • Physical Therapy Korea
    • /
    • v.10 no.1
    • /
    • pp.63-76
    • /
    • 2003
  • This research was performed to compare spinal segment motion angle between low back pain (LBP) group and painless group during trunk flexion-extension and to investigate the effect of transversus abdominis strengthening exercise on spinal segment motion angle in LBP group. Nine subjects with LBP and ten subjects without LBP participated. Transversus abdominis strengthening exercise was performed in LBP group for three weeks, and spinal segment motion angles were compared before and after the exercise performance. Spinal segment motion angles were measured both in sitting and standing position. Results were as followed: 1) Subjects' average age was 24.79 years, height was 167.84 cm, and weight was 59.95 kg. 2) Spinal segment motion angle of T10/l1 was significantly higher in LBP group compared with painless group (p<.05) in sitting position during trunk flexion-extension. 3) In sitting position, whereas entire lumbar segment motion angles were lower in LBP group compared with painless group (p<.05), angle of L4/5 was higher in LBP group compared with painless group (p<.05). 4) There was no significant difference in thoracic segment motion angle in standing position. 5) After three weeks of transversus abdominis strengthening exercise, thoracic segment motion angle increased both in sitting and standing position (p<.05). 6) In painless group, there was no significant difference in entire spinal segment motion angles in sitting and standing position (p>.05). When spinal segment motion angles were compared between sitting and standing position, there were slight differences. In sitting position, there was no difference in spinal segment motion angle between LBP group and painless group while hip joint motion angle and sacral inclination angle of LBP group was lower than those of painless group (p<.05). In standing position, lumbar segment motion angle was significantly lower in LBP group than that of painless group. Transversus abdominis strengthening exercise influenced thoracic segment motion angle more significantly than lumbar segment motion angle.

  • PDF

Analysis of Impact Response in a Poroelastic Spinal Motion Segment FE Model according to the Disc Degeneration (다공탄성체 척추운동분절 유한요소 모델에서 추간판의 변성이 충격 거동에 미치는 영향 해석)

  • 김영은;박덕용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.188-193
    • /
    • 2003
  • To predict changes in biomechanical parameters such as intradiscal pressure, and the shock absorbing mechanism in the spinal motion segment under different impact duration/loading rates, a three dimensional L3/L4 motion segment finite element model was modified to incorporate the poroelastic properties of the motion segment. The results were analyzed under variable impact duration for normal and degenerated discs. For short impact duration and a given maximum compressive force, relatively high cancellous pore pressure was generated as compared with a case of long impact duration, although the amount of impulse was increased. In contrast relatively constant pore pressure was generated in the nucleus. Disc degeneration increased pore pressure in the disc and decreased pore pressure in the cancellous core, which is more vulnerable to compressive fracture compared with intact case.

Cross sectional area change of the dural-sac according to impact duration in a spinal motion segment FE model (척추운동분절 FE모델에서 충격시간에 따른 마미 단면적의 변화)

  • Kim, Y. E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.117-120
    • /
    • 2002
  • In this study the occlusion of dural-sac, the outer membrane of spinal cord in the lumbar region, was quantitatively analyzed using one motion segment finite element model. Occlusion was quantified by calculating cross sectional area change of dural-sac far different compressive impact duration(loading rate) due to bony fragment at the posterior wall of the cortical shell in vertebral body. Dural-sac was occluded most highly in the range of 8∼12 msec impact duration by the bony fragment intruding into the spinal canal. t=400 msec case 4% cross sectional area change was calculated, which is the same as the cross sectional area change under 6 kN of static compressive loading.

  • PDF

Variation of Paraspinal Muscle Forces according to the Lumbar Motion Segment Fusion during Upright Stance Posture (직립상태 시 요추 운동분절의 유합에 따른 척추주변 근력의 변화)

  • Kim, Young-Eun;Choi, Hae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.130-136
    • /
    • 2010
  • For stability analysis of the lumbar spine, the hypothesis presented is that the disc has stress sensors driving feedback mechanism, which could react to the imposed loads by adjusting the contraction of the muscles. Fusion in the motion segment of the lumbar spinal column is believed to alter the stability of the spinal column. To identify this effect finite element (FE) models combined with optimization technique was applied and quantify the role of each muscle and reaction forces in the spinal column with respect to the fusion level. The musculoskeletal FE model was consisted with detailed whole lumbar spine, pelvis, sacrum, coccyx and simplified trunk model. Vertebral body and pelvis were modeled as a rigid body and the rib cage was constructed with rigid truss element for the computational efficiency. Spinal fusion model was applied to L3-L4, L4-L5, L5-S1 (single level) and L3-L5 (two levels) segments. Muscle architecture with 46 local muscles was used as acting directions. Minimization of the nucleus pressure deviation and annulus fiber average axial stress deviation was selected for cost function. As a result, spinal fusion produced reaction changes at each motion segment as well as contribution of each muscle. Longissimus thoracis and psoas major muscle showed dramatic changes for the cases of L5-S1 and L3-L5 level fusion. Muscle force change at each muscle also generated relatively high nucleus pressure not only at the adjacent level but at another level, which can explain disc degeneration pattern observed in clinical study.

The Effect of Heel-height on the Lumbosacral Region Angle of Young Ladies (구두 굽 높이가 20대 여성의 요천추부 각도에 미치는 영향)

  • Kim, Byoung-Gon;Gong, Won-Tae;Kim, Han-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.2 no.1
    • /
    • pp.49-59
    • /
    • 2007
  • Objective : To purpose of this study was the most of the ladies wear high-heeled shoes at lease 4 to 5 day a week but the effect of it's height on the lumbo-sacral legion angle has not been clearly defined. Method : Subject were 20 young ladies, who had majored in physical therapy of the Dae-gu Health College. Method 1. PACS system X-ray was used to measure the lumbo-sacral legion angle under the condition of bare foot, 3cm, 7cm high-heeled at standing position. 2. Spinal Mouse was used to measure the spinal segment motion angle and length under the condition of bare foot, 3cm, 7cm high-heeled at being Flexion-Extension position Result : The result of this study were as follow I. Significant statistical increase in lumbar lordosis was observed as the heel height was increased from bare foot to 7cm high-heeled(p<.05), but there was no significant difference in the lumbo-sacral angle & sacral angle(p>.05). 2. The Height and the weight of the subjects, their preference on the shoes didn't affect the lumbo-sacral lesion angle(p>.05) 3. The variation of the heel height didn't affect the spinal segment motion angle and length(p>.05). Conclusion : There is strong relationship between the high of heel with increasing the lumbar lordosis(p<.05).

  • PDF

Application of Stiffness Matrix Element for Finite Element Analysis of Spine (척추의 유한 요소 해석을 위한 강성 행렬 요소의 적용)

  • 정일섭;안면환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.226-232
    • /
    • 2003
  • Difficulties in the finite element modeling of human spine are evaded by using a stiffness matrix element whose properties can be characterized from experimentally measured stiffness of functional spinal units. Relative easiness is in that inter-vertebral discs, ligaments, and soft tissues connecting vertebrae do not need to be modeled as they are. The remarkable coupling effect between distinct degrees of freedom induced by the geometric complexity can be accommodated without much effort. An idealized block model with simple geometry for vertebra is employed to assess the feasibility of this method. Analyses are performed in both levels of motion segment and spinal column, and the result is compared with that from detail model. As far as the global behavior of spine is concerned, the simplification is found not to aggravate inaccuracy only if sufficient experimental data is provided and interpreted properly.

Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model (순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석)

  • Yun Sang-Seok;Jung Sang-Ki;Kim Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.

Effects on the Adjacent Motion Segments according to the Artificial Disc Insertion (인공 추간판 적용으로 인한 인접 운동 분절의 영향)

  • Kim, Young-Eun;Yun, Sang-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.122-129
    • /
    • 2007
  • To evaluate the effect of artificial disc implantation and fusion on the biomechanics of adjacent motion segment, a nonlinear three-dimensional finite element model of whole lumbar spine (L1-S1) was developed. Biomechanical analysis was performed for two different types of artificial disc, ProDisc and SB $Charit{\acute{e}}$ III model, inserted at L4-L5 level and these results were also compared with fusion case. Angular motion of vertebral body, forces on the spinal ligaments and facet joint under sagittal plane loading with a compressive preload of 150 N at a nonlinear three-dimensional finite element model of Ll-S1 were compared. The implant did not significantly alter the kinematics of the motion segment adjacent to the instrumented level. However, $Charit{\acute{e}}$ III model tend to decrease its motion on the adjacent levels, especially in extension motion. Contrast to motion and ligament force changes, facet contact forces were increased in the adjacent levels as well as implanted level for constrained instantaneous center of rotation model, i.e. ProDisc model.