• Title/Summary/Keyword: spin group

Search Result 137, Processing Time 0.031 seconds

An NMR Study of Unequal Site Exchange of 9-Methyl Group in Triptycene by Spin-Lattice Relaxation and 2D-EXSY Experiments

  • Cho, Jang-Geun;Ahn, Sang-Doo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • An unequal site exchanging system induced by restricted rotation of 9-methyl group in 1,8-dichloro-9-triptycene has been studied by spin-lattice relaxation and 2D-EXSY experiments. The exchange rate obtained from relaxation studies is very well coincident to the result of line shape analysis, and the difference of the relaxation times ($T_1$) in two different sites has an important role to analyze 2D-EXSY experimental data.

  • PDF

A Study on Spin-Lattice Relaxation of $^{19}$F Spins in Benzotrifluoride: Contributions from Dipole-Dipole Interaction and Spin-Rotation Interaction

  • Hyun Namgoong;Jo Woong Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.91-95
    • /
    • 1993
  • In this work we have studied the spin-lattice relaxation of $^{19}$F spins in benzotrifluoride in our quest for a reliable method of discriminating the contribution due to dipolar relaxation mechanism from that due to spin-rotational mechanism for nuclear spins located on methyl or substituted methyl group in organic molecules. Over the temperature range of 248-268 K the decay of normalized longitudinal magnetization was found to be well described by a two parameter equation of the form R(t) = exp(-st){$\frac{5}{6}$exp(-s$_1$)+$\frac{1}{6}$} which was derived under the assumption that interactions in the A3 spin system are modulated randomly and predominantly by internal rotational motions of -CF_3$ top, and it was shown that the separation of contribution due to dipolar interactions from that due to spin-rotation interaction could be successfully achieved by least-square fitting of observed data to this equation. The results indicate that the spin-rotational contribution is overwhelmingly larger than that of dipolar origin over the given temperature range and becomes more deminating at higher temperature.

Spin in Randomised Clinical Trial Reports of Interventions for Obesity (비만 중재 관련 무작위배정 비교임상연구 보고의 spin 연구)

  • Lee, Sle;Won, Jiyoon;Kim, Seoyeon;Park, Su Jeong;Lee, Hyangsook
    • Korean Journal of Acupuncture
    • /
    • v.34 no.4
    • /
    • pp.251-264
    • /
    • 2017
  • Objectives : To identify the prevalence and types of spin in randomised controlled trials(RCTs) of obesity with statistically non-significant results for primary outcomes to provide adequate reporting directions. Methods : Spin is specific reporting strategy that could lead the readers to misinterpret the results of RCTs. RCTs on obesity with statistically non-significant primary outcomes published from July 2015 to June 2016 were retrieved from PubMed. All included RCTs were classified into 3 intervention categories. The identification and classification of spin in the included articles was performed by two independent researchers. Results : Among 46 RCTs with statistically non-significant primary outcomes, 32 studies were assessed as having at least one spin in title, abstract or main text. Of these, 9 articles were on complementary and alternative medicine, 7 on western medicine and 16 on dietary supplement and exercise. The frequency of spin among the types of interventions was similar. The most common type of spin was 'focusing on statistical significance within-group comparison' in results section of abstract and main text, and 'focusing only on treatment effectiveness with no consideration of statistical significance' in conclusion section of abstract and main text. Studies where random sequence generation was appropriately done was less likely to have spin. Conclusions : As a majority of obesity RCTs have spin, researchers should pay more attention to adequately interpreting and reporting statistically non-significant results.

KPACK: Relativistic Two-component Ab Initio Electronic Structure Program Package

  • Kim, Inkoo;Lee, Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.179-187
    • /
    • 2013
  • We describe newly developed software named KPACK for relativistic electronic structure computation of molecules containing heavy elements that enables the two-component ab initio calculations in Kramers restricted and unrestricted formalisms in the framework of the relativistic effective core potential (RECP). The spin-orbit coupling as relativistic effect enters into the calculation at the Hartree-Fock (HF) stage and hence, is treated in a variational manner to generate two-component molecular spinors as one-electron wavefunctions for use in the correlated methods. As correlated methods, KPACK currently provides the two-component second-order M${\o}$ller-Plesset perturbation theory (MP2), configuration interaction (CI) and complete-active-space self-consistent field (CASSCF) methods. Test calculations were performed for the ground states of group-14 elements, for which the spin-orbit coupling greatly influences the determination of term symbols. A categorization of three procedures is suggested for the two-component methods on the basis of spin-orbit coupling manifested in the HF level.

Experimental Study on Spin Coated Thin Cover Layer for High Numerical Aperture Optical Disc

  • Dohoon Chang;Myongdo Ro;Duseop Yoon;Park, Insik;Dongho Shin;Kim, Jinhwan
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.313-318
    • /
    • 2001
  • The present study relates to a method of manufacturing 100$\mu\textrm{m}$ thick cover layer for the high density digital versatile disc system (HD-DVD), which uses a high numerical aperture of 0.85 at 405 nm wavelength. Spin coating technique was investigated as means for manufacturing the cover layer within sufficient margins of thickness variation and with good mechanical properties including small radial and tangential tilts. The influence of processing variables such as spinning speed, spinning time, and dispensing position was investigated. The effect of viscosity of UV-curable resin was also investigated.

  • PDF

Spin evolution of Horizon-AGN early-type galaxies

  • Choi, Hoseung;Yi, Sukyoung K.;Dubois, Yohan;Kimm, Taysun;Devriendt, Julien. E.G.;Pichon, Christophe
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.33.1-33.1
    • /
    • 2018
  • The differential rotational properties of early-type galaxies (ETGs) revealed by integral field spectroscopy surveys is arguably one of the most exciting findings in the galaxy evolution study during the past decade. Numerical studies have shown that galaxy mergers under various configurations can reproduce the observed distribution of ETG spin. However, we suggest an alternative scenario for the spin evolution of a large fraction of ETGs. Using the Horizon-AGN simulation, we follow the spin evolution of 10037 color-selected ETGs more massive than 1010 Msun that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals(5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, fSR, and the mean spin of massive ETGs. Although the environmental dependence is not clear in the fSR, it is visible in the mean value of the spin parameter. The environmental dependence is driven by the satellite ETGs whose spin gradually decreases as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of central ETGs of halos with Mvir > 1012.5 Msun, but only 22% of satellite and field ETGs. We find that non-merger induced tidal perturbations better correlate with the galaxy spin-down in satellite ETGs than mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  • PDF

ON A CLASS OF TERNARY COMPOSITION ALGEBRAS

  • Elduque, Alberto
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.183-203
    • /
    • 1996
  • When dealing with a Lie group or, in general, with an analytic loop or quasigroup, its symmetry is broken by the election of the distinguished identity element.

  • PDF

Hydration Effect on the Intrinsic Magnetism of Natural Deoxyribonucleic Acid as Studied by EMR Spectroscopy and SQUID Measurements

  • Kwon, Young-Wan;Lee, Chang-Hoon;Do, Eui-Doo;Choi, Dong-Hoon;Jin, Jung-Il;Kang, Jun-Sung;Koh, Eui-Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1233-1242
    • /
    • 2008
  • The hydration effect on the intrinsic magnetism of natural salmon double-strand DNA was explored using electron magnetic resonance (EMR) spectroscopy and superconducting quantum interference device (SQUID) magnetic measurements. We learned from this study that the magnetic properties of DNA are roughly classified into two distinct groups depending on their water content: One group is of higher water content in the range of 2.6-24 water molecules per nucleotide (wpn), where all the EMR parameters and SQUID susceptibilities are dominated by spin species experiencing quasi one-dimensional diffusive motion and are independent of the water content. The other group is of lower water content in the range of 1.4-0.5 wpn. In this group, the magnetic properties are most probably dominated by cyclotron motion of spin species along the helical π -way, which is possible when the momentum scattering time (${\tau}_k$) is long enough not only to satisfy the cyclotron resonance condition (${\omega}_c{\tau}_k$ > 1) but also to induce a constructive interference between the neighboring double helices. The same effect is reflected in the S-shaped magnetization-magnetic field strength (M-H) curves superimposed with the linear background obtained by SQUID measurements, which leads to larger susceptibilities at 1000 G when compared with the values at 10,000 G. In particular, we propose that the spin-orbital coupling and Faraday's mutual inductive effect can be utilized to interpret the dimensional crossover of spin motions from quasi 1D in the hydrate state to 3D in the dry state of dsDNA.