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HOMOLOGY OF BASED GAUGE GROUPS
ASSOCIATED WITH SPINOR GROUP

Youngal CHO1

ABSTRACT. We study the homology of based gauge groups associ-
ated with the principal Spin(n) bundles over the four-sphere using
the Eilenberg-Moore spectral sequence and the Serre spectral se-
quence with the Dyer-Lashof operations.

1. Introduction

Let G be a compact, connected simple Lie group. The fact that
73(G) = m4(BG) = Z leads to the classification of principal G' bundles
P, over S* by the integer k in Z. For a given Py, the orbit spaces of
connections up to based gauge equivalence is homotopy equivalent to
the triple loop space of G [2]. That is, Cx = Ax/G2(G) ~ Q3G where A
is the space of the all connections in P and G5(G) is the based gauge
group which consists of all base point preserving automorphisms on F.
Since Ay is a linear space, it is contractible. Hence BG2(G) ~ 3G,
so GY(G) ~ Q(Q2G) where ~ is the homotopy equivalence. Moreover
G%(@) is infinite dimensional and each G(G) is homotopy equivalent to
G3(G) for any component k.

Let Spin(n) be the n-th spinor group which is the universal covering
space of SO(n) for n > 3. In this paper we study the homology of
based gauge groups associated with the principal Spin(n) bundles over
the four-sphere.
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2. Preliminaries and basic facts

For a (n + 1)-fold loop space, there are homology operations,
Qip-1) Hq(Qn+1X3]Fp) - Hpq+i(P—1)(Qn+1X§Fp)

defined for 0 < ¢ < n when p = 2 and for 0 < i < n, ¢ = q for
mod 2 when p is an odd prime which is natural for a (n + 1)-fold loop
space. Let Q¢ be the iterated operation Q; ... Q;( a times ) and / be the
mod p Bockstein operation. We refer [9] for the condensed treatment of
these homology operations. Throughout this paper, the subscript of an
element always means the degree of an element, for example the degree
of a; is 1.

Since 73(G) = Z for a compact, connected simple Lie group G,
7o(22G) = Z. Let Q3G be the zero component of 3G and E(z) be the
exterior algebra on zx.

THEOREM 2.1. [9, Theorem 3.1.4] In the path-loop fibration
QX - PQrTIX — QrLX,

we have the following.

(a) If z € H, ("' X;F,) is transgressive in the Serre spectral se-
quence, then so is Q;x and 7 0 Q;p—1)T = Q(i+1)(p—1) © TT for each 1,
0 < i < n where T is the transgression.

(b) For p > 2 and n > 1, d2P~Y (2P~ @ 7(z)) = —BQp—1)7(x) if
I e HQq(Qn+1X; Fg)

(c) Forp =2, SqlQx = Q;_1z if x € Hy ("1 X;F3) and ¢+ is
even.

Let H,(Q4S™;Fy) = F2[Q$Q5Q5¢tn-4 : a,b,c > 0], n > 4. Recall that
H.(Q35%F,) = Fo[Q3Q5Q5[1] * [-297+¢] : a,b,¢ > 0], where Q35* is
the zero component in Q*$* and a homology class [1] is the image of
the generator in Ho(S%; Fy) for the map: S¢ — Q454. It is also known
in [11] that

H,(Q55% F2) = E(QIQ3[1] *[27* " ra+b2>1)
(1) ® IF‘2[(Q(11Ql;;:1;1)2 1 a, b > 0] & FZ[Q%Q%QEQ}TI - a, b,C > 0] .
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3. Mod 2 homology of based gauge groups

We have the following homotopy equivalences by the Bott pefiodicity:

QS0 ~ SO/U,

Q(0/U) ~U/Sp,

Q(U/Sp) ~ BSp x Z,

Q BSp ~ Sp,

QSp ~ Sp/U.
Since Spin(n) is the double covering space of SO(n) , QSpin(n) ~
Q50(n) and Q*Spin(n) ~ QF¥SO(n) for all k > 2. Moreover we know

the homology of every space involved in above the Bott periodicity [5].
Hence we have the following Lemma from the Bott periodicity.

LEMMA 3.1. The (co)homologies of iterated loop spaces for Spin are
as follow:

(a) H*(Spin;F2) = Falugiys : i > 0],
H*(QSpin; Fa) = Falvgip2 : ¢ > 0],
H*(Q*Spin; F) = E(wgir : 0 > 0),
H*(Q3Spin; Fa) = Falzg; : i 2 1],
H*(Q3Spin; Fa) = E(ygi_y : 1> 1),
*(Q Spin;IFz) = E(ug; 1> 1).

S

(b) H.(QSpin;F3) = E(ag; : 1 > 1),
H.(Q2Spin;Fo) = E(bgiq1 : i > 0),
H, (3 Spin; o) = Fylcys : 1 > 1],
H*(QOSpm Fy) = E(dgi—1 : 1 > 1),

H.(Q5Spin; Fy) = Falugi_o : i > 1].

Now we study the behavior of the Serre spectral sequence for the
following fibration:

Q§Spin(n) — Q3Spin(n +1) — QaS™.
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THEOREM 3.2. Let {E7,,d"} be the Serre spectral sequence con-

*,%)

verging to H,(Q4Spin(n + 1);F3) for the following fibration:
QaSpin(n) — QaSpin(n + 1) — Q5™ ,n > 3.

Then E? = E*® if and only if n = 4k + 3 for some k > 0.

Proof. Note that Spin(4) ~ Spin(3) x Spin(3) and Spin(5) ~ Sp(2).
Using the same method in the proof of Theorem 2.1 in [7], we can get

2) H,(4Sp(2); F2) = H, (1S3, F,) ® H,(Q4ST; Fy).

From this we get the conclusion for n = 3,4. Now we assume that n > 5.
Since the Serre spectral sequence for the above fibration is the spectral
sequence of Hopf algebras, by the naturality of the Dyer— Lashof opera-
tion it is enough to check whether the transgression 7(t,—4) from E,_4 o
to Egn_5 is trivial or not where H,(Q%*S™;Fy) = Fo[QiQ5Q5tn_4 :
a,b,c > 0]. Now we have the following morphisms of fibrations:

°Spin/Spin(n) S . Q3Spin(n) —— Q§Spin

! ! !

()  Q58pin/Spin(n+1) —— Q3Spin(n+1) —— Q2Spin

! l !

QLsn _— QLsn . *

Consider the Serre spectral sequence for the first column fibration. Since
the connectivity of the space 2°Spin/Spin(n) is (n—6), the element ¢,,_4
in EZ:iO =~ H,(Q*S™; F2) should transgress to the element of dimension
n—>5in E&;fs =~ H,(Q5Spin/Spin(n); Fs).

Now consider the Serre spectral sequence for the top row fibration
converging to H,.(Q§Spin(n);F2). By the Bott periodicity, there is a
homotopy equivalence between (24 Spin and Sp. Note that H,(Sp;Fs) =
E(ugx+3 : k > 0). Hence if n—5 is not of the form 4k+2,0< k <n-1,
that is, n is not 3 modulo 4, then the element of dimension n — 5 in
H.(°Spin/Spin(n); F2) can not be the target of the first non-trivial
transgression. Therefore

fa: Hn_5(Q55pin/Spin(n);IF2) — n_5(QgSpin(n);IF2)
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is not zero if n # 4k + 3 for some k > 0. Now we consider the mor-
phism between the first column fibration and the second column fibra-
tion. Then by the naturality of differentials, we get that

T(tn—v): Bn_40 = Hy_4(Q*S™;Fy) — Eg s = Hy_5(QaSpin(n); Fz)

is not zero if n # 4k+-3 for some k£ > 0. Hence the Serre spectral sequence
for the second column fibration converging to H., (Q§Spin(n+1);F;) does
not collapse at E? if n # 4k + 3 for some k > 0.

For the case of n = 4k + 3, we consider the following morphisms of
fibrations:

Q3 Spin —_ * — Q5Spin

o | |

Q8 Spin/ Spin(dk + 3) —L— Q&Spin(dk +3) —— QiSpin

Since Q¢Spin ~ Sp and Q5 Spin ~ Sp, every transgression is nontrivial
for the Serre spectral sequence for the top path loop fibration. Consider

the map: h: Spin — Spin/Spin(4k + 3). Then
R* : H¥**3(Spin/Spin(4k + 3);Fo) — H¥*+3(Spin;Fy)
is nonzero. Therefore
(Q%h)* : H*=2(Q5Spin/Spin(4k + 3); Fa) — H*~2(Q5Spin; Fy), k > 1
is also nonzero. From this we have that
(Q°h)« : Hy—2(Q3Spin; F2) — Hyy2(Q5Spin/Spin(4k + 3); Fy)

is nonzero. Hence we have nontrivial transgression which is from the
generator of degree 4k — 1 for the Serre spectral sequence for the bottom
row fibration converging to H.(Q3Spin(4k + 3);Fy), that is,

fe : Hye—2(Q° Spin/ Spin(4k + 3);Fy) — Hyp_o(Q5Spin(4k + 3); F)

is zero. Hence by the naturality of differentials, the Serre spectral se-
quence for the second column fibration in diagram (3) collapses at E? if
n = 4k + 3 for some k > 0. ) |

Since G8(Spin(n)) ~ Q4Spin(n), we compute H.(QSpin(n);Fs) to
get H.(G8(Spin(n)); F2). The mod 2 homology of Q3Spin(n) is com-
puted in [6]. Note that Spin(3) = S and Spin(4) = S° x S3. Hence
from (1) and (2), we get the result for n = 3,4,5. So we exclude these
cases for the following theorem.



68 Younggi Choi

THEOREM 3.3. As an algebra, H,(G§(Spin(4n));F2), n > 1, is iso-
morphic to

FoQfusk—1: 1 < k < [n/2]]

QF2[QQ5vsk4s : a,b > 0,[(n~1)/2) <k <n-—2]
®F2[QiQ5Q5usk—1 : a,b,¢ > 0,[n/2] <k <n —1]
QF [Q%Qgngm—s-}’zk ca,b,c>0,0<k<2n—-1
and 2n+ k # 3 mod 4],

H.(G8(Spin(4n + 1)); F2), n > 1, is isomorphic to

Fo[Qfuak-1:1 < k < [n/2]]
QF2[Q3Q5vsk 44 : 0,0 > 0,[(n~1)/2] <k <n—2]
®]F2[Q(11Q3Q§U4k_1 : a‘7b, cz O, [n/2] < k <n-— 1]
OF2[Q3Q5Q5wan—3+2k : @,b,¢ > 0,0 < k < 2n
and 2n+k # 2 mod 4],

H.(G8(Spin(4n + 2));F2), n > 0, is isomorphic to

IFQ[Q‘I‘u4k_1 1<k< [’l’l/Q]]
®F2[QQ%vsk14 12,0 > 0,[n/2] <k <n—2]
®F2[QQ5Q5uak—1: a,b,c > 0,[(n+1)/2] <k <n—1]
QF2[Q$Q5Q5wan—142k : 6,0, > 0,0< k <2n—~1

and 2n+ k # 1 mod 4]
®F2[Q4Q5Q5vsn—4 : a,b,c > 0]

{ F2[Q$Q5wsn—_3 : a,b > 0] if n is even

F2[Q¢Q%usfn/2-1 : @,b > 0]  ifnis odd ,

H.(G4(Spin(4n + 3)); Fa), n > 0, is isomorphic to

Fo(Qfuse—1:1 < k < [(n+1)/2]]
®F2[Q3Q5vsk 14 : 0,0 > 0,[n/2] <k <n-—1]
RF[Q3Q5Q%usk—1 : a,b,c > 0,[(n+1)/2] <k <n-—1]
®F2[Q%Q3Q§w4n—-l+2k ta,b,e>0,0<k<2n+1

and 2n+k # 1 mod 4],

where [n] denotes the greatest number less than or equal to n.

Proof. Consider the Serre spectral sequence for the following fibra-
tion:
Q4Spin(4n + 1) — Q§Spin(dn +i + 1) — Q184+,
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(Case 1) i = 0. n > 1. We can express H.(Q4S4";F;) = F2[Q3Q5Q5tan—4 :
a,b,c > 0] as follows:

F2[Q4Q5tun—a : a,b > 0] @ F2[Q1Q3Q5(Q3tan—4) : @,b,c > 0].

By Theorem 3.2, we have non-trivial transgression from t4,—4 to the
primitive element wa,_5. Hence by Theorem 2.1, we have

Qi Q5tan—a) = Q3Q5Q5Wan—5,a,b,c¢ > 0.

Now we check whether 7(Q3t4,—4) is trivial or not, that is, Qqway,—5 is
zero or not. By the dimension reason, only possible primitive element
of that degree is

{ Q2vV4n—s if n is even

Q%uzn_g if nis odd .

By the Nishida relation, Sql action on Qav4n_4 is Q1v4n_4 and Sql ac-
tion on Q3uzn—3 is Q1Q2uzn—3, i.c., SqLQ2v4n—g # 0 and Sq, Q3uzn_3 #
0. On the other hand, the Nishida relation implies

SqQaWan—s5=)_, (™ 2])Q3+2_]Sq*w4n 5

(4n_ )Q3w4n 5
=0.

Hence Qw45 is neither Q2v4y,— 4 nor Q3us,—3. Hence 7(Q3t4n—4) = 0.
Let Q3tan—qa = wgn—5. Then Q%Qgnggn_s are permanent cycles for
a,b,c > 0 and we get the conclusion.

(Case 2) i = 1. n > 1. By Theorem 3.2, there exists non-trivial trans-
gression from (4,3 to the primitive element of degree 4n — 4. But the
only possible primitive element of that degree is v4,_4 if n is even and
Q2ougpn—3 if n is odd. Note that [(n —1)/2] = [(n — 2)/2] for even n and
[n/2] = [(n —1)/2] for odd n. So we have

Van—4 if n is even

T(tan—3) = {

Q2uon—3 if nis odd.
For even n, by Theorem 2.1, we get

T(QO L4n 3) Q?ng4n—4) a, b _>_ 0’
T(QEQ4Q5tan—3) = QIQ5T Q§(wan—3), a,b,c > 0.
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Note that Q4(van—a) = Q2(wan—3). On the other hand QgQ’l’Qg(w4n_3)
are permanent cycles for a,b, ¢ > 0. For odd n, we have

T(QEQ%Q5tan—3)= QQ5Q5(Q2uzn—3)
= Q(ll g+1Q§(u’2n—3)’ a, b,C Z 0.

On the other hand, Q2Q3Q%(uz2n,—3) are permanent cycles for a, b, ¢ > 0.
For each n, Q¢Q4 Q5T Q%(14,—3) are also permanent cycles for a, b, ¢ > 0.
Let Qatg4n_3 = Vsn—sa. Then Q2Q1Q5Q%(vsn—4) are permanent cycles
for a,b,c > 0. Moreover by the Bockstein lemma, we have that

(4) Q5  vgn_g = Q1Q3  wan—_3,a >0

where d" is the r-th order differential in the homology Bockstein spectral
sequence {B",d"} [8].

(Case 3)i=2,n2>1.

Q1 Q3wan—3 if n is even
Q%Q§+1u4[n/2]_1 if nisodd .

Q2 tan—2) = {

Moreover Q3Q5TQ5(Lan—2) are also permanent cycles for a, b,c > 0. By

the Nishida relation, Sq!Q1Q2 ™ 14n_2 = QoQ5  tan—2, a > 0. By the
generalized Bockstein lemma [8] together with (4), we get

1 1 1
SQ*Q1Q5+ lap—2 = QZ+ Ugn—4,a > 0.

By the Nishida relation, we have Q2Q1t4n—2 = Q4Vsn—a. If we put

Q1tan—2=wsn—3, QEQT Q5 (tan—2) can be expressed as Q3 Q8 Q5wsn—3.
Then we have the following:

Fo[Q$Qwsn—3 : a,b > 0] ® F2[Q3Q3Q5 ™ vsn—s : a,b,¢ > 0]
= F2[Q§Q5Q5wsn—3 : a,b,c > 0].

Moreover Q3Q2Q5Q% ™ (14,_2) are also permanent cycles for a, b, ¢ > 0.
So if we put Qstan—2 = wen_1, then QEQ2Q5Q%(ws,—1) are permanent
cycles for a,b,c > 0.

(Case 4) © = 3, n > 1. By Theorem 3.2, the Serre spectral sequence
converging to H.(Q4Spin(n + 4);Fs) collapses at the E;-term and we
get the conclusion. a
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4. Mod p homology of based gauge groups

Given a path-loop fibration, QX — PX — X there also exists a
second quadrant Eilenberg-Moore spectral sequence {E,,d,} of bicom-
mutative and biassociative Hopf algebras where

(1) Ep = Torgy«(x,r)(R, R) as Hopf algebras
(2) Ex = Eo(H*(22X; R)) as Hopf algebras
(3) d, has bidegree (r, —r +1).

We denote the primitives and the indecomposables of H*(X;IF,) by
PH*(X;F,) and QH*(X;F,), respectively. In the Eilenberg-Moore
spectral sequence, we have a suspension map

0:QH"(X;F,) = Tor;li’(*X;Fp)(Fp,Fp)

= E; " - EZM ¢ H QX F,).

Since the elements of Tor;;’&,Fp)(IFp,Fp) are primitive and permanent

cycles in the Eilenberg-Moore spectral sequence, the above map induces
the suspension homomorphism o : QH*(X;F,) — PH*"}(QX;F,).

THEOREM 4.1. [4, Theorem 5.14] Let X be a path connected H-
space. Then the following is true.

(a) The Eilenberg-Moore spectral sequence collapses at E, if and only
if ker o = 0.

(b) The suspension o : QH*(X;F,) — PH* 1(QX;F,) is injective if
k # 2 mod 2p.

(c) The suspension o : QH*(X;F,) — PH*"1(QX;F,) is surjective
if k— 1% —2 mod 2p.

THEOREM 4.2. [13, Theorem 1| The Eilenberg-Moore spectral se-
quences for the path loop fibrations converging to the mod p (co)homo-
logy of the single, the double, and the triple loop spaces of any simply
connected finite H-space collapse at the Es-term.

From now on we denote H,(Q2'S™;F,) by Q;(n) and ®%_, H.(Q:S™;
F,) by Qi(n1,: -+ ,n,) for i = 2,3,4.
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THEOREM 4.3. For p an odd prime, as an algebra

H*(gg(SpinQn + 1))§]Fp) = E( g—ng(p_l)(UZp—3) 1a,b>0)
®Fp[ﬁQZ—1Q§(p_1)(u2p—3) 1a>0,b>0]
®E(Qg_1Qg(p_1)(u2¢_3) ra,b>0,1<1< [gnp—_l],i # 0 mod p, 1 : odd)
®]FP[/3QZ—1QI§(ZJ_1) (u2i—3) - a Z 07b > Oa 1< S [271,+1],

1 2 0 mod p, i : odd|
®Fp[Qg(p_1)QZ(p_l)v2m_4 ta,b >0, [37—‘1—,‘—1] <i<2n—1,i=0mod p
®E(Qg—1ﬁQg(p_1)QZ(p_l)'UZpi—zi :a>0,b>0,c20,

[2ip_—1] <1< 2n—1,i =0 mod p)
®]Fp[ﬂQZ_1ﬁQZ(p_1)Qi(,,_l)vzpi_4 ra,b>0,c >0, [-2%;'—1] <1< 2n-1,

i =0 mod p
®Q(2i +1)([22] < i< 2n— 1,0 # 0 mod p,i : odd),

H..(GY(Spin(2n + 2));F,) = H.(G4(Spin(2n + 1)); Fy) ® Q4 (2n+1).

Proof. From (3], as an algebra H,(Q3SU(n+ 1);F,) is isomorphic to

FP[Qg(p_l)(Q2(p——l)[1] *[~p]) :a > 0]
®]Fp[QS(,,_1)(u2¢_2) :a>0,1<i<n,i#0mod p]
®E(Qy-18Q5,_1yu2i—2 : @ > 0,b>0,[2] <4 < n,i # 0 mod p)
®Fp[ﬂQg_lﬂQg(p_l)u2i_2 ca,b>0, [%] <i<mn,i% 0 mod p
®E(Qg_1Qg(p_1)v2pi_3 ta,b20,[2] <i<n,i=0mod p)
®Fp[ﬂQg_1Qg(p_1)vgpi_3 :a>0,b>0, [%] <i<n,i=0mod p].

For an odd prime p, Harris [10] proved that there is mod p cross sec-
tions s : SU(2n 4+ 1)/SO(2n + 1) — SU(2n + 1) and get the following
decomposition

SU(2n+1) ~y SU(2n+1)/SO(2n+1) x SO(2n +1).
Hence we have

Q3SU(2n +1) ) QBBSU(2n+1)/S0(2n+ 1) x Q350(2n +1).

So the mod p homology of Q350(2n + 1) for odd primes p is the one
part of the direct summands of the mod p homology of Q3SU(2n + 1).
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From this and the fact Q350(2n + 1) ~ Q3Spin(2n + 1), we get

H,(©3Spin(2n + 1);F,) = Fy Q%) (@ap-n 1] * [-7]) s 2 0
®Fp[Qg(p_1)(ugi_2) :a>0,1<i<2n—1,i% 0 mod p,i: odd]
®E(Qp_18Q5,_1yuzi—2 : @ > 0,b>0,[2] <i < 2n — 1,

i # 0 mod p, 1 : odd)
®F,[BQp_18Q%,_1yui—2 1 a,b>0,[222] < i < 2n -1,
i Z 0 mod p, : odd]
®E(Qp_1Q5,_1)vapi-3 1 a,b > 0,[22-] <i < 2n — 1,4 = 0 mod p)

®]Fp[ﬁQg—1Qg(p_1)v2pi—3 ra > 0; b Z 07 [an_l] <1 S 2n — 1a

i = 0 mod p).

Now we study the Eilenberg-Moore spectral sequence converging to
H*(Q§Spin(2n + 1);F,) with

(5) Ejp = Tor - (03 spin(2n+1));F,) (Fp, Fp) .

Then by Theorem 4.1, the collapse condition of above spectral sequence
depends on whether

o : QH?*PT2(Q3Spin(2n + 1);F,) — PH*1(QdSpin(2n + 1);F,)

is injective or not. By the exact sequence of Milnor -Moore and Theorem
4.1, we have that
QH+2(Q3Spin(2n + 1);F,) = PH*P+2(Q3Spin(2n + 1);F,)
(6) > QH?P+3(Q?Spin(2n + 1);F,) .
From Theorem 4.2 and the above information of H, (Q§Spin(2n+1);F,),
we can obtain that H,(Q2Spin(2n+1);F,) is, as an algebra, isomorphic
to
E(Q‘(’p_l)mgi_l :a>0,1<i<2n+1,i% 0 mod p,i: odd)
2n+1
p
1
;_ ]<i<2n+1,i=0 mod p].

@ FplBQl—1)T2i—1 : a > 0, ] ]<i<2n+1,i% 0mod p,i : odd]

2n

® Fp[Qg(p—l)y2i—2 ca>0,]

Since ]Q‘(‘p_l)mgi-ll = 2p% — 1 and |Qg(p_1)y2i_2l = 2p*i — 2, there
is no indecomposable element of degree 2kp + 3 for some k > 0 in
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H.(22Spin(2n +1); F,). So by duality, there is no primitive element of
degree 2kp + 3 for some k > 0 in H*(Q2Spin(2n + 1);F,). Then in (6),
QH*?P+2(03Spin(2n + 1);F,) = 0. Hence ker 0 = 0. So by Theorem
4.1.(a), the Eilenberg-Moore spectral sequence in (5) collapses at F5 and
there is no coalgebra extension problem in such a spectral sequence [12].
Hence by duality, the Eilenberg-Moore spectral sequence converging to
H,(Q4Spin(2n + 1);F,) with

E? Cotory, (B3 Spin(2n+1);Fp) (Fp, Fp)

collapses at E? and there is no algebra extension problem. Hence we
get the conclusion for H,(Q§Spin(2n + 1);F,) by the formal Cotor cal-
culation.

Now we consider the following fibration

Q3Spin(2n + 1) —— Q3Spin(2n +2) —— Q3527+1,

Over the rationals, we have Spin(2n+2)) ~¢o Spin(2n+1) x §?**! and
we have H,(Spin(2n+2);F,) = H.(Spin(2n+1);F,) ® H,(S*"+1;F,).
Then by Theorem 4.2, we have that

H.(Q3Spin(2n +2);F,) = H.(QSpin(2n + 1);F,) ® H (QS*THTF,).

Like the case of Spin(2n + 1), there is no primitive element of degree
2kp + 3 for some k > 0 in H,(22Spin(2n + 2);F,). So the Eilenberg-
Moore spectral sequence converging to H,(Q4Spin(2n+2);F,) collapses
at E? and we get the conclusion. O

REMARK. Spinor groups play a crucial role in understanding excep-
tional Lie groups. For examples, G5 is a subgroup of Spin(7) fixing a
point z € S7 where Spin(7) acts transitively on (z,y, z) € S8 x §¢ x 87,
where z 1y and Eg can be constructed from Spin(16)[1]. Moreover there
is a sequence of the following subgroups such that every subgroup is mod
2 totally non-homologous to zero in the group containing it [14]:

G2 C Spin(7) C Spin(9) C Fy C Eg C E7 C Es.

Hence the homology of based gauge groups associated with spinor group
have a rich information for those of exceptional Lie groups.



(10]
(11]
(12]
[13]

[14)
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