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ON A CLASS OF TERNARY
COMPOSITION ALGEBRAS

ALBERTO ELDUQUE

1. Introduction

When dealing with a Lie group or, in general, with an analytic loop
or quasigroup, its symmetry is broken by the election of the distin-
guished identity element.

In [N], a new multiplication is defined on a loop by means of z -,y =
z(a\y), where a\y is the left division of y by a. With this new mul-
tiplication, the element a turns out to be the new identity element.
More generally, in studying quasigroups, the existence of a Malcev op-
eration (see [Sm]) plays an important role. This is a ternary operation
such that 8(z,z,y) = 8(y,z,z) = y for any z,y and can be defined
as 8(z,y,2) = (z/(y\y))(y\2), which for loops (or éven just left loops)
becomes 6(z,y,2) = z(y\z) = = -y 2.

As a privileged example, the seven—dimensional sphere S7 = {z €
R® : (z|z) = 1}, where (|} is the standard inner product, has a struc-
ture of analytic Moufang loop (but not a Lie group) inherited from the
multiplication in the real division octonion algebra @. Hence, if we
identify S7 with {z € @ : n(z) = 1}, where n is the norm of Q, then
the product in @ of two elements in S7 belongs to S7. Although 57 is
perfectly homogeneous, this identification points out the distinguished
identity element of @ and breaks the symmetry. The corresponding
Malcev operation here is given by

8(z,y,2) = z(y\2) = 2(y~'2) = 2(§2),
where y — ¢ is the conjugation in O.
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This suggests the investigation of the triple product {r, y. 2} = a(yz)
or, alternatively, {z,y,z} = (xyjz, defined on any Cayley Dickson
algebra. This is the aim of the present paper.

These triple products have beer investigated over R by Shaw [Sh1-
3], they are related to the so called vector cross products, which have
been studied in [Ec] and [B—G] and have recently »een used by Okubo
(O] to find solutions to the Yang Baxter equaticn. Both Shaw and
Okubo put emphasis in the fact that these triple products have larger
groups of symmetries (automorphisms) than the corresponding Cayley-
Dickson algebras. Shaw determines these groups in [Sh3]. Many of our
results will be a general reformulation of results i [Sh1-3].

The approach used by Shaw is to determine tie properties of the
triple products without appealing to the underlying (binary) compo-
sition algebra. However, in dealing with the automorphism group, he
breaks the symmetry by fixing one element. This is the same as break-
ing the symmetry by considering an associated composition algebra.

The approach here will be to consider these triple products over
arbitrary fields of characteristic not two from the opposite point of
view. From any composition algebra of dimension 4 or 8, the properties
of the associated triple products will be deduced from properties of the
composition algebras. In particular, the automorphism groups of these
systems in dimension 8 appear very naturally as Spin groups and the
automorphism group of the Cayley Dickson algeb-a will be recovered
as the isotropy subgroup at the identity elemen , thus providing a
description of the automorphism group of any Cay ey Dickson algebra
by means of multiplications by elements of trace zero. This action of a
rank 7 spin group on a Cayley- Dickson algebra was considered also in
[E-M] to study the reductive homogeneous space S7 = Spin(7)/G,.
In that paper, the fact that the automorphism group of the Cayley
Dickson algebra coincides with the isotropy subgroup of Spin(7) was
proved only for the real division octonion algebra, by using that both
groups are connected Lie groups with the same Lie algebra. The use of
the triple products here allows to get this result very easily in complete
generality.

Schwarz considered in [Schw] the invariants of (75 and Spen(7) over
C. He obtained that Spin(7) is precisely the set of linear maps in
GL(C), with C the Cayley-Dickson algebra over C, prescrving the
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norm of C and a specific skew-symmetric multilinear map C* — C.
This mapping appears naturally in our description.

It must be remarked here that all the triple composition algebras
have been determined, up to isotopy, by McCrimmon [McC].

The paper is structured as follows, Section 2 will introduce the class
of ternary composition products studied here and will relate them to
composition algebras. Section 3 will be devoted to the calculation of
the automorphism groups and Lie algebras of derivations and to derive
some consequences of them. Finally, in Section 4, a multilinear skew-
symmetric form which appears in previous sections will be expressed
in terms of traces of products of elements in Cayley-Dickson algebras.
This will be related to the work on invariants by Schwarz [Schw].

Throughout the paper, all vector spaces and algebras will be consid-
ered over a field F' of characteristic not two. For standard facts about
composition algebras, see {Sch] and [ZSSS).

2. Three—fold vector cross products and related triple com-
position products

In this section, the definitions and some relevant properties of the
triple products considered will be given. These latter are classified in
two types in [Sh2] in case the dimension is 8 (over R). The same clas-
sification will be given here in general but in a different way, and a
property which separates these two types, which appear in [Sh2; The-
orem 7.5] as a byproduct, will be given here a central role. This is the
property used by Okubo [O] in defining what he calls the quaternionic
and octonionic triple systems, which he uses to obtain solutions of the
Yang--Baxter equation.

A three-fold vector cross product on a vector space V equipped with
a nondegenerate symmetric bilinear form (:|-) is a trilinear map

X:VxVxV-—V
(a,b,c) — X(a,b,c)
satisfying
(1) (X (ay, az, a3)|as) = 0 for any i = 1,2,3
(2) (X(a1,a2,a3)|X (a1, a2,a3)) = det((aila;}))
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(see [B—G]). Linearizing (1) we get
(X(Clla”fh(ls)iaz) = -'<X((l1,612,613)|01> = {),

so X(a,a,b) = 0 for any a,b € V. Similarly, X(a,b,6) = 0, so that
X is skew-symmetric. Therefore, X can be viewed as a linear map
AV - V. If dimV < 2, then the only possibility is X = 0. Also,
notice that (X(a, b, ¢)|d) is skew-symmetric in its arguments.

Now, assume that the vector space with a nondegenerate symmetric
product (V, (-]-}) is equipped with a triple product

(-} VXV xV—V
(a.b,¢) v {a,b,c}

satisfying

i) {a,a,b} = {a]a)b = {b,a,a},

1) ({a,b,c}{a,b,c}) = (ala){b]b){c|c),

for any a,b,c € V. Then, following [Sh1], {-,-,-} will be called a
3C product on (V. {:]-)). The triple (V,(:]),{:,-, }) will be called a
3C algehra.

These two definitions are equivalent:

PROPOSITION 1 ([Sh1]). Let V be a vector spece equipped with a
nondegenerate symmetric bilinear form {-|-) as above. If X is a three
fold vector cross product on V., then the triple product {-,-,-} defined
by

(3) {a.b,c} = X(a,b.c) + (a]b)e + (blc)a - {a|c)b

1sa3C product on V. Conversely, if {-, -, -} is a 3C- product on (V, {-]-)),
then the trilinear product X defined by (3) is a threefold vector cross
product.

We include a proof for completeness:

Proof. If X is a three-fold vector cross product and {-, -, -} is defined
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by (3), then {a,a,c} = (ala)e = {c,a,a} for any a,c € V and

({a,b,c}|{a,b,c}) = ( (a b,c)|X(a, b, ¢))+
byc + (blc)a — (ale)b|{alb)c + (b|c)a — (a|c)b)

((a (a]bd) (a|c))
=det | (a|b) (b]b) {(blc) |+
(ale) (ble) {c|c)

({alb)e + (blc)a — (alc)b | (alb)e + (blc)a — (alc)b)
(4) = (ala)(blb)(c|c)
Conversely, if {-,-,-} is a 3C-product on V and X is defined by (3),

then X is skew-symmetric and

(c|X(a,b,c)) = {c|{a,b,c} — (alb)e) = (c|(L(a,b) — (alB)I)(c)),

where L(a,b): z — {a,b,z} and I is the identity mapping.
But L(a,a) = (ala}l, so

(9) L(a,b) + L(b,a) = 2{alb)I.

Also, L(a,b)*L(a, b) = (ala)(b|b)I, where * denotes the adjunction with
respect to (|-}, so L(a,b)*L(a,c) + L(a,c)*L(a,b) = 2{a|a){b|c)I, and

with ¢ = a this gives
(6) L(a,b)*L(a,a) + L(a,a)*L(a,b) = 2(ala){a|b)I.
Since L(a,a) = (al|a}l = L(a,a)*, we conclude from (5) and (6) that

(7) L(a,b)* = L(b,a)

provided (a|a) # 0 and, by Zariski density (extend scalars if necessary),
for any a,b € V. Now, (5) and (7) imply that L(a,b) — (a|b)I is skew—
symmetric, so that {c|(L(a,b) — (alb)I)(c)) = 0, as required.

Finally, the computation in (4) implies that X is a three—fold vector
cross product. [J

The next theorem appears essentially in [B—G; Theorem 5.2], we
also enclose the proof, with some simplifications:
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THEOREM 2. Let {-,-,-} be a 3C product on a pair (V,(-|-)) and
let ¢ be any element of V. with {ele) # 0. Define ¢ multiplication in V
hy

(8) ac = <€|(,\~1{a‘€,(‘}.

Then:

1) With this multiplication, V is a composition algebra with identity
elemient e and associated bilinear form (z|y); =: (ele) ™1 (z|y).

it) Either {a,b,c} = (c|c)(ab)e (type I) or {a,b,c} = (e|e)a(be) (type

II), for any a,b,c € V, where » +— & is the standard involution in

the composition algebra V.

Conversely, given any composition algebra V with symmetric bilin-
ear form (-|-}1 and identity element ¢, and any nonzero scalar a € F,
either of the two possibilities {a,b.c} = a(ab)e or aa(bc) define a 3C -
product on (V,{-|-}). with (:|-) = «{-|')1, from which we recover the
composition product by means of (8).

Proof. 1) and the converse are clear. For i), f a = ¢, {¢,b,c} =
----- {byc.c} + 2{c|b)c = —{ele)be + 2(ele)(e]b)1ec = {e|e)be. The same
applies for ¢ = ¢, and if b = ¢, {a,¢,¢} = {e|e)cc by the definition.
If dimV < 2 we are finished. Also, if a = b, ‘a,a,¢} = (ala)c =
(ele){ala) e = {e]e}alac) = (e|e)(wa)e. The same applies if b = ¢. If
a=c, {a.ba} = ~{ba al+2(albla = ~(cle){ala b+ 2(e|e}{a|b)ja =
{eleY(ab)a = (e]c)a(ba).

Therefore, it 1s enough by linearity to check ii) with a, b, ¢ different
members of an orthogonal basis of (Fe)t. We are left with two cases:
a) Fe+ Fa+ Fb+ Fe = H is a quaternion subalgebra of V. Then we

may assume that ab = —ba = ¢ so

(ab)e = a(bc) = —a(b(ba)) = (b|b); ‘a|a);e,

and {a,b,c} = X(a, b, c) is orthogonal to a,b and ¢, where X is as
in the previous proposition. Thus, {a,b,¢} = fe +d, with d € HL
and

A= (fele) = (X(a,b,c)le) = (X(a,e b)|c)
= (eledabled, = (ele} (ablat)y = (cle) (ala) (B},
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Therefore, {a,b,c} = (ele)(ab)c = (e|e)a(be) if V = H (dimV = 4)
or d = 0. But, if dimV = 8, linearizing (2) with respect to a; and
then with respect to a; gives

(X(a,b,c)|X(zc,e,¢)) + (X(zc,b,¢)|X(a,e,c)) =0

for any z € H+, and since X(a,e,c) = (ele}ac = b for some 7, we

obtain (X (a, b, c)|(zc)c) = 0, 50 (X(a,b,c)|z) = 0, (X(a,b,c)|HL) =

0,d =0 and X(a,b,c) = Be.

b) dimV = 8 and c is orthogonal to the quaternion subalgebra H =
Fe + Fa+ Fb+ Fab. Then V = H + Hc and (ab)e = —(ab)ec =
a(bc) = —a(bc). Now, (X(a,b,c)le) = —(X(a,b,e)lc) = (ablc) = 0.
By item a), (X(a, b, ¢)|ab) = —(X(a, b, ab)|c) = 0 and similarly, con-
sidering the quaternion subalgebras H' = Fe + Fa + Fc¢ + Fac
and H" = Fe + Fb + Fc + Fbc, we get by item a) that 0 =
(X(a,b,c)lac) = (X(a,b,c)|bc). Since {e,a,b.ab,c,ac,be,(ad)c} is
an orthogonal basis of V, it follows that X(a,b,c) = {a,b,c} =
—e(ele)(ab)e = e(ele)(ab)c for some ¢ € F. Taking norms we get
that e = £1.

Therefore we conclude that for any a,b,c in V, either {a,b, ¢} =
(e|e)(ab)c or {a,b,c} = (e|e)a(be) (or both). By Zariski topology (ex-
tend scalars if necessary to get an infinite field). the sets {(a,b,¢c) €
V3 : {a,b,c} # (ele)(ablc} and {(a,b,c) € V¥ : {a,b,c} # (elc)albe))
are open, so if they are nonempty, they intersect nontrivially, a contra-
diction that proves ii) O

REMARK. If {-,-,-} is a 3C—product on a pair (V,{:]"}) and e and
f are two elements of V with (ele) # 0 # (f|f), then the composition
algebras constructed in Theorem 2 by means of e and f are isomorphic.
To prove this it is enough to check that the corresponding norm forms
are equivalent. But if ¢ : V — V is the linear map given by ¢(z) =

(ele)™{e,z, f}, then:
(F1O ™ He(@e(@)) = (F15) " (ele) *(fe,z, FH{e, o, £3) = (ele) " (zlz),

which shows that they are indeed equivalent.

The distinction between types I and II in the Theorem above can be
done easily by means of the following result (see also [Sh2; Theorem

7.5]):
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PROPOSITION 3. Let X be a threefold vector cross product on
(V.(:])), let {-,-,-} be the associated 3C-product and let ® : V4 —
F' be the skew-symmetric multilinear form given by ®(a,b, ¢, d) =
{(a|X(b,c,d)). Then, for any ai,b; e V,1,7=1,23:

(9)
(X(a1,az,a3)|X(b1,by,b3)) =

det({ailb,)) +¢ > D (o) br1)) (a2, Ao (), brizys breay)s

g even T even

where ¢ = 0 if dimV = 1,2 or 4, e = 1 if dimV = 8 and {a,b,c} =
(ele)(ab)e in the Theorem above, and € = —1 if dimV = 8 and
{a,b,c} = (e|e)a(be) in the Theorem above.

REMARK. This means that the two types I and II of the Theorem
above can be distinguished from the beginning and do not depend on
the particular choice of the element e.

Proof. f dimV = 1or 2, then X = & = 0 = det({a,|b,)) and we are

done. If dimV = 4, we have also that

Y D (omlbr)) B(ao(2)r Go(a), brizy. brgay) = 0.

O even v even

To prove this, and since this expression is skew-symmetric in the a;’s
and in the b;’s, and multilinear, it is enough to assume that the a;’s and
b;’s are members of an orthogonal basis {e1,€2,€3,e4} of V. Hence,
we may assume a; = ¢j = by, ag == €9 = by, az = 3 and by = ¢4. But
in this case what we obtain is

<f'1|€1)¢’(62, €3,€2,€4) + *16132|92>‘I>(63,€1,<4, e;) =0
and, by linearizing (2) with respect to as:

| (erler) (erlea) (erfeq)
<4Y(61,(12,(13)|X((31,62,C4)> = det <(32|€1) (62'(2) <€2|C4> = (.
(ealer) (eslea) (esles)

Finally, if imV = 8, ¢ € V with (e|e) # 0, ac = (e|e) ' {a, ¢, ¢} and

{a,b,c} = (e|e)(ab)e (the other case is similar), put € = 1 in (9), and it
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1s enough to check (9) with the @;’s and b;’s in an orthogonal basis of
V with different a,’s and different b;’s. We may assume that the basis
includes ay, a2, a3 and X(ay, ag,a3), which is orthogonal to the others.
Three cases are possible:

i)

ii)

iii)

Assume there are at least two elements in common in the families
ay,asz,az and by, by, b3. Then, the second term on the right of (9) is
zero and (9) follows from the linearization of (2).

Assume there is only one common element, say a3 = b3. Then

det({a;|b;}) = 0 and
(X(a1,az2,a3)| X (b1,b2,a3))
ele)*{(a1a2)as|(b1bz)as)
ele){(a1az)as|(bibs)as)r = (ele)(aslas)i{araz[bib:)1
azlas)((a1ay)be|by)s
= (aslas){b1|X (a1, a2, b)) = {(as|as)®(ay, a2, by, b2),

so we obtain (9).

Finally, if there is no element in common, the right hand side of (9)
is 0 and for the left hand side we define « * y = (aslas)~'{z,as3,y}.
Then, H = Faz + Fa; + Faz + Faj * as is a quaternion subalgebra
of the Cayley-Dickson algebra (V,x). If any of the b,’s, say b3 is
vai * az, then

<X(a]7a'2aa3)lX(b17b21 b3)> = ,u'<b3|X(b17b2’b3)> =0
for some scalar y. Otherwise, V = H+Hx*bs, by, by, b3 € Hxby = H+
and 4Y(b1, bg, b3) = {b], bz, b3} == ‘)’(bl*bz)*b;; or ’)/bl *(bz*bg) for some

e~ F, SO ‘Y(bl,bz,bg) € H'L and also (X(al,ag,a3)|X(b1,b2,b3)) =
0. O

We have used that if H is a (generalized) quaternion subalgebra of

=
= (
= {

a Cayley-Dickson algebra and b € HL, then V = H + Hb, H(Hb) +
(Hb)H C Hband (Hb)? C H.

REMARK. It is straightforward to prove that given a 3C-product,

the automorphism group is

Aut(V,{-,-,-}) = {9 € GL(V) : ¢ is orthogonal for (|-} and

@ € Aut(V, X))}
= {¢ € GL(V) : ¢ leaves invariantboth (-|-) and ®}.
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Also, given (Vi,{-,-,-}1) and (V,{-,-,-}2) and & : V; — V; a linear
map, then ¢ is an isomorphism if and only if ¢ is an isometry of
(Vi, {])1) into (V4,{:])2) and ¢ 1s an isomorphism of (Vi, X)) into
(Va, X2). In particular, if dimV = 8, no 3C product of type I is
1somorphic to another of type II. This gives an alternate proof of [B—
G; Lemma (5.3)].

Also notice that if X is a three fold vector cross product of type I,
then — X is of type II (just look at (9)). Of course, we say that X is
of type T'if so is the associated 3¢ product.

THrorem 4. (Isomorphisin condition) Let {-.-, }, be a 3C product
on a pair (V,.{:]);), ¢ = 1,2 Theu, the triple products (V;.{-.-,-}1)
and (Vy,{-,-.-|3) are 1somorphic 1f and only if they are of the same
type and the bilinear forms (-|-),, 7 == 1.2, are equivalent.

Proof. 1t is clear that if ¢ @ (Vi { .- 1) —— (V. {~. .-}2) is an
isomorphism, then for any ¢, a ¢ 1

(cledipta) = ({ele)ia) = p({c, e, a} )
= {ple), @le),pla)le = (ple)lgie))apla) |

so ¢ gives an equivalence between (- and (+|-)y, and now it follows
that both 3C" algebras are of the same type.

Conversely, assume that both 3¢ algebras arc of the same type
and the bilinear forms ave equivalent. We take an clement ¢ € V, with
{efe) 1 # 0. we can choose an element. f € V, with (fif), = (¢]¢);. Now,
the corresponding composition algebras constructed on Vy and V5 by
means of Theorem 2 have equivalent norm forms, so they are isomor-
phic (see [Sch]). Let ¢ an isowmorphism of these co nposition algebras.
If both 3C algebras are of type 1. then ¢({a, b, e} ) = (cle) i ((ab)e) =
(:ﬂf)z({1,/'(u't)v;f;iv—i;))‘u”(‘«’)) = {p(a) y (h), ()}, so ¥ is actually an iso-
morphisii of 3C" algebras, The same happens in cuse they are of type

I 0

If we change (2), so as to impose (X(ap,az,a3)[X(ay. ay,a3)) =
adet({a;la;)), 0 # o € F, then we can extend scalars to a certain
extension field A such that /o € K and consider in Vi = K ¢p V
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the new X = (/a)~'X, so ® = (y/a)~'®. Then,

(X(a1,az,a3)|X (b1, b2,b3)) =
det((ailb;) +€ Y D (@o1)lbr1))B(ao(2), o(3): briz): br(a))s

o even r even

S0

<X(a1,a2,a3)|X(b1,b2,b3)) =
adet((ailb;) + eva > D (ao)lbr1))2(a0(2), Go(3), br(z), br(z));

o even T even

with € = 0, £1. In case the dimension is 8, we may consider elements in
V so that the last sum is nonzero and we conclude that \/a € F'. More-
over, with 42 = a, multiplying the equation (X (a1, az,a3)|X (a1, az,a3))
= a det({a;|a;)) by B and considering (-|-) = f(:|-), we obtain (2) with
(-} changed to (:|")'. Hence, we may assume always a = 1 as in (2).

In defining quaternionic and octonionic triple systems, Okubo con-
siders a finite—dimensional vector space equipped with a nondegenerate
symetric bilinear form (-|-) and a nonzero triple product

[, ]: VXV xV—DV
(a,b,¢) — [a,b,¢]
verifying that (a|[b, ¢, d]) is skew-symmetric (that is, [-, -, -] satisfies (1))
and the condition
(9)
<[(l],(7.2.,ﬂ3]|[b1, b27b3]> =
@ det(<ai|bj)) + ﬂ Z Z (aa(l)’br(1)><ac(2)|[aa(3)7 br(2)a br(3)]>

o even T even

The paragraph above shows that if « # 0 and dimV = 8, necessarily
a € F? and 8% = a. Moreover, (9) is then a consequence of

{[ay,az,as]|[ay,azas,)] = adet({a;]a;)).

On the other hand, if dimV = 4, 8 is multiplied by 0, so the last
summand in {9) is superfluous. In case dimV < 2, everything is trivial.
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On the contrary, if o = 0 and 3 # 0, take e < V with {ele) # 0,
W = (Fe)t and define an anticornmutative product in W by ¢ -y =
[z, y,¢]. The nondegencracy of (-} and (9) gives for z,y,z € W:

(r-y) == [[r,y.c],z,e] = 3a|ly, 2, ¢])e + Aele)|x, vy, 2],

SO

(€-y)-z=8(zly-z)e+ flele)]z,v, 2],

which is skew-symmetric in z,y, 2
If 2y,1,,23 are orthogonal non isotropic vectors in W. Ty rg) -
2 ) 2
T3) - 14 is skew-symmetric on its arguments and by (9):

((r1-x2)-23) a4 = Ple|e)|[xy, 7, 23], 74, 0]

= Aele) Z (To)|Ta(r) - T4)T 5(3)-

o even

By skew symmetry, x4 should play the same role than Ty, T9,T3, SO
0= ((x1-72)23) 74 = (¥5(1)|To(2)-74). As a consequence, (Vie-y) =0
for any orthogonal r.y € W and this implies [, y,¢] = 0 for any
r,y,¢ € V,so [-,-,] = 0. Therefore, dimW < 3, dimV < 4 and then
(9) reduces to [[z,y,z],t.u] = 0 for any r,y,z,t,u € V. Of course, in
case a = = 0 again (9) reduces to [[z,y,z],t,u] = 0. This proves
equations (2.6) in [O].

3. Automorphisms and derivations

The objective in this section is to determine the automorphism
group and derivation algebra of any 3C-product. For dimension 8,
this has been done over R in [Sh3], by working inside the Lie alge-
bra so(V,(:|-)) of skew- symmetric transformations relative to ( |-} and
considering a distinguished seven-dimensional subspace.

Our approach is to consider exactly the same spin representation as
in [E-M], so that everything works very smoothly by using Moufang
identities. For lower dimension, things are easier. First we reformulate
some previous remarks in:
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LEMMA 5. Let (V,{(-|-),{:,-,-}) be a 3C-algebra, X the associated
three—fold vector cross product as in Proposition 1, ® the corresponding
skew-symmetric 4-linear form as in Proposition 3, and let ¢ € GL(V).
Then, ¢ is an automorphism of (V, {-,-,-}) if and only if ¢ is orthogonal
relative to (1) (p € O(V,(-14)) and preserves & ((p(a),o(b),o(c),
p(d)) = ®(a,b,c,d) for any a,b,c,d € V).

CoROLLARY 6 [Sh2]. Let (V,(-|'),{",",-}) be a 3C-algebra. Then,
i) If dimV =1 or 2, then Aut(V,{-,-,-}) = O(V, (-|")).
ii) If dimV = 4, then Aut(V,{-,-,-}) = SO(V,{(-|'}) (the special

orthogonal group).

Proof. 1) is clear and notice that if dimV = 4 and ¢ € GL(V), then
D(p(a), p(b), p(c)p(d)) = (det ¢)®(a, b, c,d)

for any a, b, ¢,d by the skew—symmetry of ®. O

Now, assume that the dimension of V' is 8 and fix an element e € V
with (e|]e) # 0. By Theorem 2, we may assume that there is a binary
multiplication zy on V, with identity element e, such that (zy|zy); =
(ele)(lyh, for (1) = (ele)™ (1), and {a,b,c} = {e|e}(able (the
same arguments apply for type II). Let us consider the orthogonal
subspace W = (Fe)' and the quadratic form ¢(z) = —(z|z);, for any
z € W. Also, for any * € W, let L, denote the left multiplication by z
inV:L,:V >V, v zv. L, satisfies (L,;)? = ¢(z)I and, therefore,
we get the representation of the Clifford algebra C(W,q) in V as in
[E-M]:

pr : C(W,q) — Endp(V)

rw— L,.

The restriction of py, to the even Clifford algebra C*(W,gq) is an iso-
morphism ([E-M]). We denote by a dot the multiplication in C(W, q).
Now, the corresponding spin group is (see [J2; Theorem 4.14]):

2r
Spin(W,q) = {z;-... 72, : 2; € W and Hq(m,) =1}(C CH(W,q))

=1

and by the Cartan-Dieudonné Theorem, r can be taken to be 1, 2 or
3.
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But for any r € W, using Moufang identities we obtain:

{ra,zb,xc} = <r

|€) ((xa)(ba1)(xc) = —(ele)((za)(br))(xc)

—(ele){x(ab)r)(xc) by middle Moufang

~{cle)e ((ab)(r(ze))) by left Moufang
glx){c|e) r((ub = —q(z)z{a,b,c}.

This immediately implies
pL(Spin(W,q) C Aut(V, .-} .

PROPOSITION 7. Let (V. (), {-,-,-}) be a 3C'-algebra of dimension
8 and type I, ¢ an clement of V. with (ele) # 0, so that {a,b,c} =
(ele)(ab)e for any a,b,c € V, for a convenient (bhinary) composition
product on V. Let W and ¢ be as above. Then. the automorphism
group of the composition algebra V™ is the isotropy subgroup of Aut(V,
{-,-,-}) at ¢ and it is contained in pp{Spin(W,q)).

Proof. The first assertion is clear. Now, if ¢ is an automorphism of
the composition algebra V| since pp (CH (W, q)) = Endp(V), we pick
up un clement a € CY(W, q) such that py(a) = ¢. For any r € W and
ve Ve

prla-c-a”hw) = pprx)e™' (1)
e ,*,;(1-90'— l(’(?))

e(z)e(e™ ' (1))
prie(z))(v)

i

[

so, if g(r) # 0, 1 —p(x)™ a -2 a1 € kerprlcrw,y = 0 and
a-z-a”! = p(xr). As aconsequence. a-z-a~! = p(z) for any x € W and
a bolongs to the even Clifford group 'ty soa = z-....x9,, with z; € W
and ¢(r,) # 0 for any 7. But py(a)(c) = ple) = €, so (- (x2,€) -
) =€, ri(xe- - (xy,—109,) ) = ¢. Hence, g(xzy1---q(x2,) = 1 and
a€ Spin(W,q). 0O

As a byproduct, we obtain the following description of the automor-
phism group of any Cayley-Dickson algebra:
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COROLLARY 8. Let C be any Cayley-Dickson algebra with norm n
and Cy the set of trace zero elements. Then, AutC = {L; L,,---L

.’IZ{GC(), Hf;] n(a:,-)=1 and J‘](ilfg"'(.’L'QT_]l'gr)"):1}. D

Using the conjugation, or working with the 3C-algebra of type II
given by {a, b,c} = a(bc) defined on the Cayley-Dickson algebra C, we
can substitute left by right multiplications in the Corollary above.

L2y -

REMARK. Corollary 8, together with the argument in [A-H; Sec-
tion 10, Example (2)], shows that, given a Cayley-Dickson algebra C,
its structure group as a structurable algebra is precisely pr(I't) (same
notation as in Proposition 7).

LEMMA 9. Spin(W,q) acts transitively (by means of p1) on {v €
Vvl =1} = {v €V : (v|v) = (e|e)}.

Proof. 1t is enough to see that for any v € V with (v|v); = 1, thereis
an element a € Spin(W, q) with p;(a)(e) = v. For this, consider the left
multiplication L, : V — V, which is nonsingular, and a nonisotropic
element * € L7 (W) N W (subspace of dimension at least 6). Then,
L,(z) = vz € W, so (vr)z = g(z)v and with z; = vz, 7, = ¢(z) 'z,
we obtain v = z1x4, so 1 = (v|v); = (z1|z1)1{z2]|z2)1 = q(1)g(x2),
Ty 22 € Spin(W, q) and v = pr(x; - z2)(e). O

THEOREM 10. Let (V,(:|'),{-.,-}) be a 3C-algebra of dimension
8 and type I, let e be any element of V with (ele) # 0, W = (Fe)+t
and q(z) = —(ele) ' (z|z) for any = € W. Then, Aut(V,{-,-,-}) =
pL(Spin(W, q))(= Spin(W, g)).

Proof. For any pE Aut(v’ {'7'»'})1 (‘P(e)h"(e)) = (e|€)’ 50 by Lem
ma 9, there is an element a € Spin(W, ¢q) such that ¢(e) = pr(a)(e).
Thus, ¥ = pr(a)~'e € Aut(V,{-,-,-}) and fixes e. By proposition 7,
Y € pr.(Spin(W, ¢q)) and so does . O

REMARK. For type Il 3C-algebras, everything works in the same
way but dealing with the representation given by right multiplications
pr: C(W,q) — Endp(V), z + R,. As representations of C*(W,gq),
p1 and pg are equivalent, but they are not as representations of C(W, q)
(see [E-M]}).

As for derivations, if (V,(-]-), {+,-,'}) is a 3C—algebra and ¢ € Endp
(V),» € Der(V, {-,-,-}) if and only if ¢ is skew-symmetric relative to
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(-]} (that is, p € so(V, (-])) and
®(p(a),b,c,d) + ®(a,¢(b),c,d) + ®(a,b, p(c),d) + ®(a, b, c,p(d)) =

for any a,b,c,d € V. Therefore,

ProrosiTiON 11. If (V,{-}-),{,-,-}) is a 3C -algebra and the di-
mension of V is < 4, then Der(V,{-,-,-}) = so(V,(:])). O

So let us consider a 3C" algebra (V, (-]}, {+,+,-}) with dim V' = 8 and
type I, we fix an element ¢ € V with {cle) # 0, W = (Fc)* and (W, q)
as above. For any r € W and a,b,c € V:

r((ab)e) = —(x,ab,¢) + (x (ab))

ab,x,c) — (x,a,b) b)c

+
(

(ab)a ) - (ab)(x ) (a,b,z)c+ ((2a)b)c
— (ab)(xc) - ((ab)x)e+ (albz))e + + ((xa)b)e
—

xe)
a(zb h))e — (ab)(xc),

where (a, b, ) = (ab)e — a(be) is the associator of the elements a, b, ¢ in
the (binary) composition algebra 1. Therefore:

(10) Lo{a,b,c} ={L,a,b,c}- {a,Lpbc} —{1,b,L.c}.
Thus, for any r,y € W:

[Ls,Lyl{a,b,c} = L, ({Lya,b,c} — {a,Lyb,c} — {a,b,Lyc})
— Ly({L,a,b,c} = {a,L;b,c} — {a,b, L c})
= -+ apply (10) six times

= {[Lr,Lyla,b,c} + {a,[Ly, Lylb,c} + {a,b,[L,, Ly]e},
and [L;, L,] € Der(V,{-,-,-}). Moreover, for any « € W anud a,b € V
(ralb); = (a|xb); = —(alzb),,

so Ly € so(V, (:]-)).
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We consider in C(W,q) the subspace [W, W] = span{[z,y] f =
z-y—y-x:x,y € W} and the representation pr, : C(W,q) = Endp(V)
as above. Since the restriction of p;, to C*(W, ) is an isomorphism,
the restriction pL|[W,W]. is one-one. In case the restriction of p; to
W @ [W,W](C C(W,q)) were not one-one, there would exist some
element & € W such that py(z) € p,([W,W]) C Der(V,{-,-,-}), so
by (10) {a,xb,c} + {a,b,zc} = 0 for any a,b,c € V. With b = e this
shows (ar)c = a(zc) for any a,c € V and z belongs to the nucleus of
the Cayley-Dickson algebra V, which is Fe. Thus, z € FeN'W = 0.
Hence, by dimension counting

so(V,(:[')) = pr(W) ® pr([W, W])
and

pL([W’ W]) - Der(V’ {'7 "y }) - SO(V’ (|>)’
pL(W) n Der(V’ {'7 " }) = 0.

Therefore,

THEOREM 12. Let (V,(:|),{",-,-}) be a 3C-algebra of dimension
8 and type I, let e be any element of V with (ele) # 0, W = (Fe)t
and q(z) = —(ele)~'(z|z) for any « € W. Then, Der(V,{.,-,-}) =
pLW,W]) = span{[L,,L,] : 2,y € WHZ so(W,q)). Moreover, the
derivation algebra of the corresponding binary composition algebra is
DerV = {d € Der(V, {-,-,-}); d(¢) = 0}. O

This gives another description of the derivation algebra of Cayley—
Dickson algebras valid over any field of characteristic # 2 and shows
that all the derivations are inner (see [Sch; Corollary 3.29]), even in
characteristic 3, although in this case the derivation algebra is not sim-
ple. It also gives an alternative and coordinate—free proof of Theorem
7, valid also in characteristic 3.

REMARK. Jacobson proved in [J1] that given a composition algebra
C with symmetric bilinear form (:|-), Cy the subspace of trace zero
elements, then:

Aut C ={p € GL(C) : p(1) = 1,¢(Co) = Cy and
A(‘Ip(r)v‘p(y)v@(z)) = A(ivay,z)Vl‘,y,Z € CO}»
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where A(r,y,z) = (rly x z) and v x z = yz + (y|z)1 is the projection
of ry onto Cy. A is a skew symmetric form in Cy. Similarly,

DerC ={¢ € Endp(") : (1) = 0,0(Cy) € €y and
Alp(z),y, z)+ Ale,oly), 2) + Mo,y o(2)) =0
Va,y, € Cyt.

If we consider the 3C" algebra structure on C defined by {a,b, ¢} =
(ab)e and the associated three fold vector cross product and related @,
then X(r. Ly) = {x, Ly} + {1 = vy+{rly)]l = x>y forany r,y €
Co,s0 Al y. 2y = ®(a,y,1,2) = $(1, 2.y, 2) for any r,y, 2 € Cy, and
our results Bt smoothly in Jacobsm’s results.

4. Some trace formulas

Assume in this section that ' is a Cayley-Dickson algebra over the
field F (remember, characteristic # 2), with associated nondegenerate
symmetric bilinear form () so that

ot 20 4 (ela)1 =0

for any r € C, and define the trace as usual by tr(x) = (¢|1). We con-
sider the 3C algebra (C, (-]}, {-,-, }) of type I, where {z,y,z} = (ry)z
for any r,y,z € C, with associated three fold vector cross product X
and skew -symmetric forin @ as in Propositions 1 and 3. Let Cy =
(F1)1 its subset of trace zero elements. Then, for any x,y, = € Cl:

S(1,r,y,2) = (1| X(r,y,2)) = tr X(r,y,2)
(1]) = tr((;ry)z) B -tr(,7‘,(y;‘))‘

Also, if r, y are orthogonal elements of Cy, xy+yx = 0, 50 X(r,1,y) =
Ty = %[.r, y]. Hence, for any mutually orthogonal zy,ry, v3,ry € Cy:
‘,I‘(J'1(,I'Q(J';;.I"»t))) = tr((aryrg)(aary))
= — (ryrglegry) = —(X(1, 2y, 22)| X (1, 3, 24))

(12) e (I)(;I‘].;an.l'g,{r“),
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by applying (9) with € = 1. Also, with z; = 1 and x4, 73, 74 mutually

orthogonal in Cjy:

tr(z1(z2(2324))) = — (z2|eszs)

= - ¢($27$35 1,.’1,'4) - _¢($17$23$37$4)a

and the same happens with z; = 1 for ¢ = 2,3 or 4 and the

T;’s

mutually orthogonal for j # i. Therefore, if the characterlstxc is # 2,3,

since ® is skew-symmetric:
(13) skew tr(xl(wg(x3w4))) = —®(zy,22,23,74)

for any z,x,,13,z4 € C, where
skew fx1,22,23,24) = 4, ZCaf(za(l)awa(l)axa(3),xa(4))a

with €, = +1 according to o being an even or odd permutation.
Now, if we define

M:CxC —C,
(z,y) —[w y] + tr(z)y — tr(y)z,
and ¥ : C* - F by
U(xy,22,T3,24) = tr(M(zy, z2)M(2324))

as in [Schw; (2.7)], M(1,y) = ly = —M(y,1) for any y € Cy
M(z,y) = zy = —M(y,z) for any mutually orthogonal z,y €
Therefore:

U(z1,72,23,24) = tr((z122)(2324))
- tr(m1($2($3$4)))
= ~®(x1,22,23,24)

for mutually orthogonal «1,z2,z3,74 in Cp. Again, if some z;
(say ¢ = 2) and mutually orthogonal z;’s (j # ) in Cj:

and

Co.
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\I,('r]< 1341‘31'{‘4) = ——tr(.’rl(.m.m)) == @(],.T],.’E;;,Jf‘;\‘ = "“q)(J‘11$27'r3714)

too. Thus, again, for characteristic # 2,3, we obtain
(14) P = —skew .

Now, because of (12), (13), (14), Theorems (3.23) and (3.26) in
[Schw] may be interpreted as follows:

THEOREM 13. Let C be the Cayley Dickson aigebra over the com-
plex field. Then,
1) The invariants of Aut C' are generated by (the polynomial mappings
induced by) the restrictions of {-|-), ®(1,-,-,-) and ®(-,-,,-) to Cy.
ii) The invariants of Aut(C,{:|-),{-,-,-}) are generated by {-|-) and
¢ 0O
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