• Title/Summary/Keyword: spin coating

Search Result 730, Processing Time 0.032 seconds

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.

Surface Control of Planarization Layer on Embossed Glass for Light Extraction in OLEDs

  • Cho, Doo-Hee;Shin, Jin-Wook;Moon, Jaehyun;Park, Seung Koo;Joo, Chul Woong;Cho, Nam Sung;Huh, Jin Woo;Han, Jun-Han;Lee, Jonghee;Chu, Hye Yong;Lee, Jeong-Ik
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.847-855
    • /
    • 2014
  • We developed a highly refractive index planarization layer showing a very smooth surface for organic light-emitting diode (OLED) light extraction, and we successfully prepared a highly efficient white OLED device with an embossed nano-structure and highly refractive index planarization layers. White OLEDs act as an internal out-coupling layer. We used a spin-coating method and two types of $TiO_2$ solutions for a planarization of the embossed nano-structure on a glass substrate. The first $TiO_2$ solution was $TiO_2$ sol, which consists of $TiO_2$ colloidal particles in an acidic aqueous solution and several organic additives. The second solution was an organic and inorganic hybrid solution of $TiO_2$. The surface roughness ($R_a$) and refractive index of the $TiO_2$ planarization films on a flat glass were 0.4 nm and 2.0 at 550 nm, respectively. The J-V characteristics of the OLED including the embossed nano-structure and the $TiO_2$ planarization film were almost the same as those of an OLED with a flat glass, and the luminous efficacy of the aforementioned OLED was enhanced by 34% compared to that of an OLED with a flat glass.

Fabrication of Polymer Thin Films on Solid Substrates (고체 기판에 고분자 박막의 고정화)

  • Kim, Min Sung;Jeong, Yeon Tae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.200-204
    • /
    • 2010
  • Surface properties are important for determining the functions and uses of materials. So modification of materials with polymer thin films has emerged as an important method to control the physical and chemical properties of the surface layer. We report a simple and effective method to photochemically attach thin polymeric layers to solid surface without chemical derivatization of the substrate and/or the polymer. The system is based on a photoreactive poly(4-vinylpyridine) (P4VP) thin film which is formed on the $SiO_{2}$ surface via spin coating. This substrate is then covered with another polymer film that is reacted with the benzyl radical moieties by UV irradiation. As a result of photochemical reaction, a thin layer of the later polymer is covalently bound to the surface of P4VP. Unbounded polymer is removed by sonication. The thickness of the attached film is a function of the irradiation time and the molecular weight of the polymer. Spatially defined polymer thin films can be fabricated by way of photolithography.

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.

Solution Processable Symmetric 4-Alkylethynylbenzene End-Capped Anthracene Derivatives

  • Jang, Sang-Hun;Kim, Hyun-Jin;Hwang, Min-Ji;Jeong, Eun-Bin;Yun, Hui-Jun;Lee, Dong-Hoon;Kim, Yun-Hi;Park, Chan-Eon;Yoon, Yong-Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.541-548
    • /
    • 2012
  • New candidates composed of anthracene and 4-alkylethynylbenzene end-capped oligomers for OTFTs were synthesized under Sonogashira coupling reaction conditions. All oligomers were characterized by FT-IR, mass, UV-visible, and PL emission spectrum analyses, cyclic voltammetry (CV), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), $^1H$-NMR, and $^{13}C$-NMR. Investigation of their physical properties showed that the oligomers had high oxidation potential and thermal stability. Thin films of DHPEAnt and DDPEAnt were characterized by spin coating them onto Si/$SiO_2$ to fabricate top-contact OTFTs. The devices prepared using DHPEAnt and DDPEAnt showed hole field-effect mobilities of $4.0{\times}10^{-3}cm^2$/Vs and $2.0{\times}10^{-3}cm^2$/Vs, respectively, for solution-processed OTFTs.

Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures (ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율)

  • Lee, JeongGwan;Cheon, JongHun;Kim, NaRee;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF

Fabrication and characteristics for the organic light emitting device from single layer poly(N-vinylcarbazole) (단층 poly(N-vinylcarbazole) 유기물 전기발광 소자의 제작 및 특성)

  • 윤석범;오환술
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.55-61
    • /
    • 1998
  • Organic light emitting devices from a single layer thin film with a hole transport polymer, poly(N-vinylcarbazole) (PVK) doped with 2-(4-bi phenyl)-5-(4-t-butyl-phenyl) -1,3,4-oxadiazole (Bu-PBD) as electron transporting molecules and Coumurine 6(C6), 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), Rhodamine B as a emitter dye were fabricated. The sing1e layer structure and the use of soluble materials simplify the fabrication of devices by spin coating technique. The active layer consists of one polymer layer that is simply sandwiched between two electrodes, indium-tin oxide (ITO), and aluminum. In this structure, electron and hole inject from the electrodes to the PVK : Bu-PBD active layer. Respectively, Blue, green and orange colored emission spectrum by the use of TPB, C6, Rhodamine B dye emitted at 481nm, 500nm and 585nm were achieved during applied voltages. PVK materials can be useful as the host polymer to be molecularly doped with other organic dyes of the different luminescence colors. And EL color can be tuned to the full visible wavelength.

  • PDF

Fabrication of TiO2 thin films for perovskite solar cell using RF magnetron sputter

  • Cho, Kyungjin;Lee, Seunghun;Kim, Seongtak;Chung, Teawon;Lee, Sang-won;Kim, Soo Min;Park, Hyomin;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.305.1-305.1
    • /
    • 2016
  • 페로브스카이트 태양전지는 차세대 태양전지로써 몇 년 사이에 매우 큰 폭으로 효율이 증가하고 있으며 활발한 연구가 진행되고 있다. 페로브스카이트의 태양전지의 구조는 전자전도체, 페로브스카이트 광흡수체, 정공전도체, 전극으로 구성된다. 전자전도체는 전자 포집성이 우수한 다공성 TiO2 층과 TiO2 박막 층으로 구성된다. 균일한 박막 TiO2를 형성하는 것은 페로브스카이트 태양전지의 개방전압 특성에 기여한다. TiO2 박막을 제조하는 방법으로써 용액을 사용한 스핀 코팅 법은 간편하게 제조가 가능하나, 일정한 두께의 박막을 형성하지 못하고 균일하지 못하는 단점을 가진다. 본 연구에서는 RF 마그네트론 스퍼터를 이용하여 보다 균일한 TiO2 박막을 제조하였다. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Light IV, Quantum Efficiency (QE)로 분석하였다. 이를 통하여 제조방법 차이에 따른 페로브스카이트 태양전지의 영향을 분석하였다.

  • PDF