• Title/Summary/Keyword: spikelet number

Search Result 145, Processing Time 0.027 seconds

Effects of Soil Moisture Stress at Different Growth Stage on Growth, Yield and Quality in Rice

  • Park, Hong-Kyu;Choi, Weon-Young;Kang, Si-Yong;Kim, Young-Doo;Choi, Won-Yul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.143-148
    • /
    • 1999
  • Soil moisture condition is an important limiting factor in growth and yield in rice culture. The purpose of this study was to compare the influence on the growth, yield and Quality of rice subjected to soil moisture stress (SMS) at different growth stages. Ajaponica rice cultivar, Dongjinbyeo, was cultured under flooded conditions in a plastic container filled with silty loam soil. The container was subjected to SMS until the initial wilting point (IWP) coincided with about 10% in soil moisture content and about-200 kPa in soil matric potential, and was then irrigated again, at 6 and 5 of main growth stage in 1996 and 1997, respectively. At maturity, the plant height, tiller number, leaf area and top dry weight were decreased more in SMS treatments at the early stage than the late stage. The averaged yield index of SMS to control in both years was lowest at meiosis (62.5%), which primarily resulted from lower percent ripened grain and 1,000 grain weight, and second' reduced the spikelet number per panicle and panicle number per hill, and followed at tillering stage (68.5%) which resulted from the lower production in tiller number and top dry matter during and after SMS treatment. The percent-age of read rice in SMS plants varied with the treatment stage as order of lower at meiosis (44.0%), heading (53.9%), panicle initiation (70.1%), tillering (72.1%), ripening (75.8%) and 5 days after transplanting (DAT) (79.0%). Protein content in brown rice was slightly larger in SMS at late growth stage than the control, while the contents of fat and ash differed very little between SMS and control. Contents of Mg and K and Mg/K in brown rice with SMS were lower at some treatment stages such as at ripening or panicle initiation.

  • PDF

Stability Analysis of Some Agronomical Characters and Yield Components of Barley in Response to Irrigation Period

  • Anisuzzaman, M.;Alam, Iftekhar;Rahman, A.H.M.Mahbubur;Islam, A.K.M.R.;Ahsan, Nagib
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.469-473
    • /
    • 2007
  • With the aim to analyze stability performance of six promising barley genotypes, eleven yield related characters were evaluated employing varied irrigation treatments under the tropical climate of Northern part in Bangladesh. Analysis of variance(ANOVA), phenotypic index, regression co-efficient(bi) and deviation from regression($s^2_d$) of the individual genotypes were estimated to evaluate the stable performance of the genotypes. A significant interaction was observed between the genotypes and irrigation period($G{\times}T$). Among all the genotypes, BSH-2 showed stable performance for plant height under different irrigation period, where $P>\bar{X},\;bi{\sim}1\;and\;s^2_d{\sim}0$. High phenotypic index, lower bi value and low deviations from regression were observed in case of spikelet number per spike and grain number per spike for genotype BSH-2 and plant height, spike length and harvest index per plant for BB-2 which suggest that those parameters were not usually affected by irrigation. On the other hand the genotype BSH-2 for tiller number and BB-1 for the fertile tiller number were not suitable for favorable moisture content, where $P<\bar{X},\;bi>1.0\;and\;low\;s^2_d$. Thus we suggest that genotype BSH-2 might have transmit high mean and increased phenotypic stability to the next progenies, which may consider as an ideal genotype for developing improved barely cultivars.

Influence of Nitrogen Application and Shading on the Sterile-type Cold Injury in Rice (질소시비와 차광이 벼 장해형냉해에 미치는 영향)

  • Kim, Hee-Dong;Tetsuo, Satake;Kim, Young-Ho;Kim, Byeong-Hyeon;Ree, Dong-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.3
    • /
    • pp.252-260
    • /
    • 1989
  • This experiment was carried out to clarify the causes of sterility in terms of pollination characteristics for the sterile-type cold damage as influenced by amount of nitrogen application and shading conditions in rice plants. The results obtained are as follows: The number of young microspore per anther was not changed greatly by amount of nitrogen application. The number of ripened pollen grains per anther decreased according to increase in nitrogen application and shading degree, but the anther length and stigma length were not significantly affected by those factors. The number of pollen grains on stigma decreased by intense shading. The fertility decreased with increased nitrogen application and intensified shading. The elongation of auricle distance per day was less in less nitrogen application and intense shading. The internode length of the first and the second from the top were shortened with intense shading, but that of the fourth was elongated. The number of spikelet per panicle decreased with increase in shading intensity.

  • PDF

Phenotypic Characterization of Arundinella hirta Plants in Korea

  • Chang-Woo Min;Il-Kyu Yoon;Min-Jun Kim;Myung-Ju Kim;Byung-Hyun Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.122-128
    • /
    • 2023
  • The present study was conducted to analyze agronomic characteristics of 8 ecotypes of Arundinella hirta (A. hirta) and the correlation among them. Changes in phenotypic characteristics of 8 ecotypes were measured at equal intervals of time from May to September. Among ecotypes, Jangsoo-1 has the highest plant height (172.33 cm), number of leaves (9.00) and leaf length (55 cm) while the ecotype Youngduk has the highest leaf width (1.57 cm), fresh mass (26.63 g), dry mass (7.06 g), number of spikelets per spike (53.33), amount of seeds per spike (0.74 g) and amount of seeds per 10 spikes (7.23 g). The ecotype Jinju-1 has the shortest plant height (119 cm) and leaf number (6.33), while Okgye-2 has shortest leaf length (30.67 cm), leaf width (0.93 cm), fresh mass (12.60 g), dry mass (3.30 g), spike length (30.33 cm), spikelet per spike (39.67), amount of seeds per spike (0.61 g) and amount of seeds per 10 spikes (6.00 g). Correlation coefficients were estimated among the studied agronomic characteristics which showed positive and significant association with each other. In the present study, the agronomic data collected would be useful to understand the potential of A. hirta as a forage resource and helpful in selecting the high-yielding genetic resource for future forage improvement.

The Climatic Influence on Spikelet Formation and Yield of Lowlam Rice II. Climatic Consumptive Effect for Spikelet Formation (수도의 영화수성립과 수량에 미치는 기상환경의 영향에 관한 연구 II. 영화수 성립에 미치는 기상소모효과)

  • Lee, Jong-Chul;Ahn, Su-Bong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.4
    • /
    • pp.366-375
    • /
    • 1984
  • In order to confirm the effect of climatic consumption index (C C I) on the number of spikelets and yield of rice, 3 levels of shading rates such as 0, 25, 50% of full light were treated during the tillering stage, reproductive growth stage and ripening period, respectively, in a phytotron controlled with day/ night temperature of 20/10$^{\circ}C$ and 30/20$^{\circ}C$, and field at Crop Experiment Station, Suwon, Korea. The results are as follows: 1. As solar radiation decreased during the reproductive growth stage in 30/20$^{\circ}C$ or field condition, the number of spikelets per panicle was decreased due to the decrease of the number of differentiated secondary rachis branches and spikelets as well as the increase of the number of degenerated secondary rachis branches and spikelets. 2. Our results showed slight negative correlation between C C I of the reproductive growth stage and number of panicles per square meter and number of differentiated secondary rachis branches. On the other hand, there was highly significant positive correlation between C C I of the reproductive growth stage and the number of degenerated secondary rachis branches and spikelets, and negative correlation in number of differentiated spikelets. 3. The shading during the reproductive growth stage did not affect on the percentage of ripened grains and 1000 grains weight of hulled rice, whereas those were decreased with shading during the ripened period. 4. Influence of shading in each growing stage on the yield was severe in the order of ripened period, reproductive growth stage, tillering stage. 5. Respiration rate in Jinheung was higher than that of Tongil at low temperature, but reversed above 30$^{\circ}C$. Respiratory coefficients (Q$\sub$10/) of Tongil and Jinheung were 2.74 and 1.96, respectively. Respiration/ photosynthesis ratio in Jinheung was higher than that of Tongil at low temperature, while higher in Tongil above 32$^{\circ}C$. 6. Transportation of $\^$14/C was restricted at 20/10$^{\circ}C$ in Tongil, however, there was no differences at 30/20$^{\circ}C$ in both Tongil and Jinheung. The influence of shading on the transportation of $\^$14/C did not affect at 20/10$^{\circ}C$, but it was hampered with shading at 30/20$^{\circ}C$ in both varieties.

  • PDF

Variation in Spikelet Number under Different Nitrogen Levels and Shading Treatments during Panicle Formation Stage of Rice (질소 시비량, 분시방법 및 유수 형성기의 차광처리에 따른 벼의 영화수 변이)

  • 이변우;박동하;최일선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.479-485
    • /
    • 2002
  • This study was conducted in order to elucidate the effects of nitrogen level and split application method, and shading treatment during reproductive stage on sink formation. Japonica variety Choocheongbyeo and Hwaseongbyeo and indica$\times$japonica cross type variety Nampoongbyeo were used. Five levels (6 to 30 kg/10a at 6 kg/10a interval) of nitrogen fertilization, and two split application methods (50-25-25% and 30-30-40% as basaltillering-panicle fertilizer) for each nitrogen treatment were applied. In addition shading treatments (shading rate, 65%) were performed for N 12 kg/10a and 24 kg/10a plot. Shading were applied for 30 days from panicle initiation to heading, 15 days from panicle initiation and 15days before heading. Panicle per square meter, and primary rachis branches per panicle and differentiated number of secondary branch per panicle increased according as applied nitrogen amount increased up to 18 to 24 kg/10a, and there was no significant difference between two nitrogen application methods. Primary rachis branch and secondary branch per square meter also increased according as the amount of applied nitrogen increase up to 18 to 24 kg/10a, and there was no significant difference between nitrogen application methods. Panicle per square meter and primary rachis branch per panicle were significantly decreased due to shading treatments only in Choochengbyeo. In all varieties, shading reduced secondary rachis branch per panicle significantly and the reduction was greatest in 30 days shading during reproductive stage. Spikelets per square meter increased according as the amount of applied nitrogen increases up to 18 to 24kg/10a, but showed no move increase above this nitrogen application level. Significant difference was not shown between nitrogen split methods. Spikelets per square meter also decreased significantly due to shading treatment during reproductive stage, showing the greatest reduction by 30 days shading during reproductive stage, and the least by 15 days shading during booting stage. The variation of spikelets per square meter was influenced greatest by the variation of panicles per square meter and spikelets per secondary rachis branch.

Effect of Shading on Rice Growth Characteristics Under Different Temperature Conditions

  • Zun Phoo Wai;Min-Ji Lee;Woon-Ha Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • Environmental factors play an important role in crop growth and development. In recent years, climate change has become a challenge that limits environmental factors. Light is an important environmental factor for photosynthesis in rice. In addition, temperature is one of the most important factors for rice production; thus, a 1℃ increase in temperature because of climate change can affect rice growth and development. Therefore, we investigated the effect of shading on the growth characteristics of rice under different temperature conditions from the vegetative stage to the flowering stage. Plants were grown at three different temperatures: 26℃/16℃ for 21℃, 29℃/19℃ for 24℃, and 22℃/32℃ for 27℃ in a phytotron. A 55% shade treatment was applied after 10 days of transplanting until the flowering stage. Plant height was not affected by the shading treatment. In the maximum tiller number response to shading, a lower tiller number and growth speed of tiller was found in the 27℃ condition. Among leaf characteristics, shading increased the flag leaf area, length, width, and effective leaf area; however, it decreased the leaf number on the main stem, especially at 27℃. In terms of stem characteristics, shading affected culm wall thickness in both varieties. Finally, regarding the panicle characteristics, lower panicle numbers, spikelet numbers per panicle, primary numbers, and secondary numbers per panicle were found under the shading treatment. Most of the desirable characteristics were affected by the shading treatment at 27℃. Overall, these results indicated that shading had a greater effect on rice plant growth at high temperature.

Effects of Top-Dressed N on Rice Growth in a No-Till Direct-Sown Rice-Vetch Cropping Systems

  • Cho, Young-Son;Choe, Zhin-Ryong
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.189-195
    • /
    • 1999
  • Under the no-till direct-sown rice-vetch cropping systems, where whole chopped rice straw were returned to the paddy surface at combine harvest and whole-plant of Chinese Milk Vetch(Astragalus sinicus L.) was submerged after direct-sowing, three levels of nitrogen top-dressed(0, 2, 4 kg N/10a) without basal N and two levels of sowing rate were applied into the paddy field in expectation of the enhancement of nitrogen efficiency and protection of agricultural environment in reduced N-fertilizer level. A cultivar, Dongjin, was direct-sown on May 30, 1996. Characteristics of rice growth and physicochemical properties of rice plant were observed. Under the system, reduced total N(4 kg N/10a) resulted in high panicle numbers. N-top dressed toward at later growth stages enhanced the ratio of panicle-producing tillers and at spikelet numbers per panicle. As N-level increases, DM yields of leaf and stem at heading were increased. Maximum grain yield was obtained at 4kg N/10a and major attributed factors to grain yield in this case were the number of grains per unit area and the ratio of ripened grain.

  • PDF

Study on Improving High-temperature Tolerance for Grain Filling Through Adjusting Sink Size (영화수 조절을 통한 벼 등숙기 고온내성 향상 연구)

  • Kim, Junhwan;Shon, Jiyoung;Choi, Kyung-Jin;Yoon, Younghwan;Lee, Chung-Kuen
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • The aim of this study was to test hypothesis that low sink size could mitigate deterioration of grain filling characteristics under high grain filling temperature. To achieve this aim, we selected Donganbyeo as a tolerant and Ilpumbyeo as susceptible variety to high temperature during grain filling period through screening 6 rice varieties. Then their spikelets number and the ratio of superior and inferior spikelet were compared. Grain weight and head rice ratio of Ilpumbyeo decreased significantly in high temperature. Ilpumbyeo had more spikelets than Donganbyeo. However, there was no significant difference between two varieties in the ratio of superior and inferior spikelets. So we tried to investigate the varietal difference of grain filling characteristics with removing inferior spikelets. Removing inferior spikelet in both of varieties could recover grain weight but not improve head rice ratio under high temperature. These results showed that sink/source ratio affected grain weight but didn't affect head rice ratio. Therefore, new approach was required to improve head rice ratio beyond sink/source ratio under high temperature.

Novel quantitative trait loci for the strong-culm and high-yield related traits in rice detected from the F2 population between the super thick-culm and super grain-bearing line 'LTAT-29' and the high-yielding variety 'Takanari'

  • Nomura, Tomohiro;Yamamoto, Toshio;Ueda, Tadamasa;Yonemaru, Junichi;Abe, Akira;Adachi, Shunsuke;Hirasawa, Tadashi;Ookawa, Taiichiro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.95-95
    • /
    • 2017
  • Lodging is a serious issue in rice production, because it drastically decreases the biomass production and grain yield. Since the Green Revolution, the lodging resistance has been increased by lowering the moment of above-ground parts due to the short culm by the semi-dwarf gene sd1. However, it has been pointed out that sd1 alone has suppressive effects for biomass production and yield. To increase rice yield, the long-culm and large panicle type varieties with a superior lodging resistance need to be developed. To improve the lodging resistance and yield of these type varieties, it would be effective to identify novel alleles for these traits underlying natural variations in rice and to pyramid these alleles to a single rice variety. In order to perform this strategy, we have developed new rice lines derived from crosses among varieties with superior alleles. At first, TULT-gh-5-5 was selected from a cross between strong culm and high biomass variety Leaf Star and high-yielding variety Takanari, and TUAT-32HB was selected from a cross between high-yielding variety Akenohoshi and Takanari. Then, we developed the super thick-culm and super grain-bearing line, LTAT-29 derived from a cross between TULT-gh-5-5 and TUAT-32HB. In the current study, to identify the QTLs and genes relating to the strong culm and the high yield of LTAT-29, we performed QTL analysis using SNPs markers with $F_2$ population derived from a cross between LTAT-29 and Takanari. LTAT-29 has never lodged throughout the growth period despite it had long culms and heavy panicles. LTAT-29 had a larger outer diameter of the culm and twice the size of the section modulus than Takanari. As a result, the bending moment at breaking of LTAT-29 was significantly larger than that of Takanari. Brown rice yield of LTAT-29 was $9.2t\;ha^{-1}$ about 10% higher than that of Takanari due to the larger number of spikelets per panicle. LTAT-29 had a greater number of secondary branches per panicle. In the $F_2$ population between LTAT-29 and Takanari, we found continuous frequency distributions in the section modulus and the spikelet number per panicle. Two QTLs increased the section modulus by the alleles of LTAT-29 were detected on Chr.1L and Chr.2L. One QTL increased the spikelet number per panicle of Takanari by the allele of LTAT-29 was detected on Chr.1L, and two QTLs increased the number of secondary branches per panicle by the alleles of LTAT-29 were detected on Chr.1L and Chr.4L. It was found that the alleles of these QTLs were the japonica type originated from Leaf Star or Akenohoshi. The novel QTLs for the traits related to super thick-culm and super grain-bearing and their combinations could be utilized for improving the lodging resistance and yield in rice varieties.

  • PDF