• 제목/요약/키워드: spheroidizing of cementite

검색결과 5건 처리시간 0.021초

SCM440강의 구상화 어닐링조건 최적화 연구 (Optimization of Spheroidizing Annealing Conditions in SCM440 Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제19권5호
    • /
    • pp.270-279
    • /
    • 2006
  • The effects of eight types of spheroidizing annealing conditions including annealing temperature, annealing time, cooling rate, and furnace atmosphere on the microstructure and hardeness were determined in SCM440 steel which has been widely used for automotive parts. The well-spheroidized structure and minimum hardness were obtained when the steel was heat-treated at $770^{\circ}C$ for 6 hours, cooled to $720^{\circ}C$ at a cooling rate of $24^{\circ}C/h$, and then kept for 7 hours at the $720^{\circ}C$ followed by air cooling. In order to increase the productivity and to save the manufacturing cost, it is desirable to apply a faster cooling rate to the spheroidizing annealing. It was found that a cooling rate of $100^{\circ}C/hr$ was the fastest cooling rate applicable to the SCM440 steel among the four cooling rates used in this study. The microstructure consisted of ferrite and very fine spheroidized cementite when the steel was annealed for 13 hours at $720^{\circ}C$ below $A_{C1}$ temperature. This was caused by the short annealing time and the retarding effect of Cr and Mo on both the dissolution of pearlite to cementite and coarsening of spheroidized cementite. The steel heat treated in air showed the decarburized layer of about $125{\mu}m$ in thickness at the surface.

구상화 열처리된 고탄소강의 미끄럼 마멸 거동에 미치는 시멘타이트 형상과 페라이트 기지조직의 영향 (The Effect of Cementite Morphology and Matrix-ferrite Microstructure on the Sliding Wear Behavior in Spheroidized High Carbon Steel)

  • 허하리;권혁우;구본우;김용석
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.96-101
    • /
    • 2016
  • The current study was conducted to elucidate the effect of cementite morphology and matrix-ferrite microstructure on sliding wear behavior in spheroidized high carbon (1wt. % C) steel. The high carbon steel was initially heat treated to obtain a full pearlite or a martensite microstructure before the spheroidization. The spheroidizing heat treatment was performed on the full pearlitic steel for 100 hours at 700℃ and tempering was performed on the martensitic steel for 3 hours at 650℃. A spheroidized cementite phase in a ferrite matrix was obtained for both the full pearlite and the martensite microstructures. Sliding wear tests were conducted using a pin-on-disk wear tester with the heat treated steel as the disk specimen. An alumina(Al2O3) ball was used as the pin counterpart during the test. After the spheroidizing heat treatment and the tempering, both pearlite and martensite exhibited similar microstructures of spheroidized cementite in a ferrite matrix. The spheroidized pearlite specimens had lower hardness than the tempered martensite; however, the wear resistance of the spheroidized pearlite was superior to that of the tempered martensite.

과공석강의 구상화처리에 미치는 Si 첨가의 영향 (The effect of Si Addition on the Spheroidization of Hyper-eutectoid Steel)

  • 도영수;손지하;박노진;박용일;최환;오명훈
    • 열처리공학회지
    • /
    • 제26권3호
    • /
    • pp.126-131
    • /
    • 2013
  • In this study, effects of silicon addition on the spheroidizing annealing of hyper-eutectoid steel was investigated. Heat treatment at various temperatures in the ${\gamma}+{\theta}$ region was also conducted in order to systematically control the kinetics of undissolved cementite. It was found that small amount of Si addition could increase both $A_1$ and $A_{cm}$ transformation temperature by both the JMat Pro evaluation and dilatometric measurement. It was also revealed by the microstructural observation that the volume fraction of retained cementite during heat treatment increased with decreasing temperature as well as increasing Si content. Based on the results obtained, it could be suggested that spheroidization at relatively higher temperature above $950^{\circ}C$ could be achieved by small addition of Si.

열간 단조에 의한 고탄소강의 미세조직 변화가 기계적 성질에 미치는 영향 (Effect of Microstructure Change on the Mechanical Properties in Hot-Forged Ultra High Carbon Steel)

  • 강창룡;권민기;김창호
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.212-217
    • /
    • 2012
  • This study was carried out to investigate the effect of the hot forging ratio on the microstructure and mechanical properties of ultra high carbon steel. The microstructure of ultra high carbon steel with 1.5%wt.C consisted of a proeutectoid cementite network and acicular microstructure in pearlite matrix. With increasing hot forging ratio, the volume and thickness of the network and acicular proeutectoid cementite decreased. Lamella spacing and the thickness of eutectoid cementite decreased with increasing hot forging raito, and were broken up into particle shapes, which then became spheroidized. When the forging ratio was over 65%, the network and acicula shape of the as-cast state disappeared. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up to 50%, and then rapidly increased with the increase of the forging ratio.

탄소강의 초석페라이트와 시멘타이트 구상화가 미끄럼마멸 거동에 미치는 영향 분석 (Effect of Pro-eutectoid Ferrite and Cementite-spheroidization on the Sliding Wear Resistance of Carbon Steels)

  • 허하리;권혁우;김명곤;김용석
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.345-350
    • /
    • 2014
  • The current study elucidates the effects of cementite spheroidization and pro-eutectoid ferrite on the sliding wear resistance in medium carbon (0.45wt%C) and high carbon (1wt%C) steels. Both steels were initially heat treated to obtain a fully pearlite or ferrite + pearlite microstructure. Spheroidizing heat treatments were performed on both steels to spheroidize the pearlitic cementite. Sliding wear tests were conducted using a pin-on-disk wear tester with the steel specimens as the disk and an alumina ($Al_2O_3$) ball as the pin. The sliding wear tests were carried out at room temperature in air with humidity of $40{\pm}2%$. Adapted sliding distance and applied load was 300m and 100N, respectively. Sliding speed was 0.1m/s and the wear-track radius was 9 mm. Worn surfaces and cross-sections of the wear track were examined using an SEM. Micro Vickers hardness of the wear-track subsurface was measured as a function of depth from the worn surface. Hardness and sliding-wear resistance of both steel decreased with increased spheroidization of the cementite. The decrease was more significant in the fully pearlitic steel (1wt%C steel). The steel with the pro-eutectoid ferrite showed relatively higher wear resistance compared to the spheroidized pearlitic steel.