• Title/Summary/Keyword: spherical shape

Search Result 882, Processing Time 0.035 seconds

Effect of Feedrate and Specimen Shape on Cutting Force and Surface Roughness of Ultrasonic Dental Surgical Instrument (치과용 초음파 수술기의 이송속도 및 시편형상이 절삭반력과 표면거칠기에 미치는 영향)

  • Sang Ho Kim;Seung Han Yang;Joong Ho Lee;Jong Kyun Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.109-117
    • /
    • 2023
  • In this study, the effect of the shape of the specimen and the feedrate of the dental ultrasonic surgical instrument on the cutting force and surface roughness of the specimen is analyzed. Experimental specimens were made of SAWBONES artificial bone materials in square and spherical specimens. In addition, the cutting feedrate of the surgical instrument was controlled through the developed moving system. The cutting force generated when cutting the specimen was measured through a force sensor. After the experiment, the cutting surface of the specimen was observed through a three-dimensional optical microscope and the surface roughness was measured. Through one-way ANOVA, the effect of each specimen shape and feed rate on surface roughness was analyzed. As a result of the experiment, the cutting force increased proportionally in the initial feed rate increase stage, but the increase in cutting force decreased as the feed rate continued to increase. Also, the cutting force showed a difference according to the shape of the specimen. The spherical specimen with a relatively small cutting surface area had less cutting force than the square specimen. However, as a result of one-way ANOVA, it was found that the specimen shape and feed rate did not affect the surface roughness. In future studies, it is expected to be used for comparative analysis of ultrasonic surgical instruments and correlation analysis between cutting factors.

Fabrication of Spherical SiO2 Powders from Aqueous SiO2 Sol via Ultrasonic Pyrolysis (초음파 분무 열분해 공정을 이용한 수계 SiO2 Sol로부터의 구형 SiO2 분말 합성)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.570-576
    • /
    • 2016
  • Using the ultrasonic pyrolysis method, spherical $SiO_2$ powders were synthesized from aqueous $SiO_2$ sol as a starting material. The effects of pyrolysis conditions such as reaction temperature, $SiO_2$ sol concentration, and physical properties of precursor were investigated for the morphologies of the resulting $SiO_2$ powders. The particle size, shape, and crystallite size of the synthesized $SiO_2$ powders were demonstrated according to the pyrolysis conditions. Generally, the synthesized $SiO_2$ particles were amorphous phase and showed spherical morphology with a smooth surface. It was revealed that increased crystallite size and decreased spherical $SiO_2$ particle size were obtained with increases of the pyrolysis reaction temperature. Also, quantity of spherical $SiO_2$ particles decreased with the decrease in the concentration and surface tension of the precursor.

Calculations of Optical Properties of Cloud Particles to Improve the Accuracy of Forward Scattering Probes for In-Situ Aircraft Cloud Measurements (항공기 구름 관측에 사용되는 전방산란 관측 기기의 정확도 향상을 위한 구름입자의 광학적 특성 계산)

  • Um, Junshik
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • Current in-situ airborne probes that measure the sizes of ice crystals smaller than 50 ㎛ are based on the concept that the measured intensity of light scattered by a particle in the forward and/or backward direction can be converted to particle size. The relationship between particle size and scattered light used in forward scattering probes is based on Mie theory, which assumes the refractive index of particle is known and all particles are spherical. Not only are small crystals not spherical, but also there are a wide variety of non-spherical shapes. Although it is well known that the scattering properties of non-spherical ice crystals differ from those of spherical shapes, the impacts of non-sphericity on derived in-situ particle size distributions are unknown. Thus, precise relationships between the intensity of scattered light and particle size and shape are required, as based on accurate calculations of scattering properties of ice crystals. In this study, single-scattering properties of ice crystals smaller than 50 ㎛ are calculated at a wavelength of 0.55 ㎛ using a numerically exact method (i.e., discrete dipole approximation). For these calculations, hexagonal ice crystals with varying aspect ratios are used to represent the shapes of natural small ice crystals to determine the errors caused by non-spherical ice crystals measured by forward scattering probes. It is shown that the calculated errors in sizing nonspherical ice crystals are at least 13% and 26% in forward (4~12°) and backward (168~176°) directions, respectively, and maximum errors are up to 120% and 132%.

Organ Shape Modeling Based on the Laplacian Deformation Framework for Surface-Based Morphometry Studies

  • Kim, Jae-Il;Park, Jin-Ah
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Recently, shape analysis of human organs has achieved much attention, owing to its potential to localize structural abnormalities. For a group-wise shape analysis, it is important to accurately restore the shape of a target structure in each subject and to build the inter-subject shape correspondences. To accomplish this, we propose a shape modeling method based on the Laplacian deformation framework. We deform a template model of a target structure in the segmented images while restoring subject-specific shape features by using Laplacian surface representation. In order to build the inter-subject shape correspondences, we implemented the progressive weighting scheme for adaptively controlling the rigidity parameter of the deformable model. This weighting scheme helps to preserve the relative distance between each point in the template model as much as possible during model deformation. This area-preserving deformation allows each point of the template model to be located at an anatomically consistent position in the target structure. Another advantage of our method is its application to human organs of non-spherical topology. We present the experiments for evaluating the robustness of shape modeling against large variations in shape and size with the synthetic sets of the second cervical vertebrae (C2), which has a complex shape with holes.

Thermoelastic Properties of Porous Metals After Material Forming Processes (다공성 금속의 성형공정 후 열탄성 계수)

  • 이종원;김진원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • The effective thermoelastic properties of porous metals are discussed herein after each material forming process such as hot pressing or extrusion. The voids in metal matrix are assumed to be initially spherical in shape and to be distributed randomly. Once the porous material deforms plastically due to each material forming process, the voids change their shape from a sphere to an ellipsoid and align in one direction. Since the voids are compressible in nature, the void volume fraction is assumed to be decreasing during each material forming process.

  • PDF

Characterization of a Commercial Black Chrome Solar Coating (상업용 Black Chrome 태양선택 흡수면의 특성)

  • Lee, K.D.;Chea, Y.H.;Auh, P.C.
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.65-73
    • /
    • 1987
  • Microstructural basis for the thermal degradation of electrodeposited black chrome "solar-L-foil" heated in air has been investigated using scanning electron microscopy, energy dispersive x-ray analysis, X-ray diffraction techniques and UV-VIS-NIR spectre-photometer. Experimental result, the change in the shape of the particle comprising the film from their initial needle like structure to a more spherical shape with an oxide after 1hr annealing at $600^{\circ}C$ has been observed. The effect is to degrade solar absorptance of the thin film.

  • PDF

Numerical Simulation of Bubble-Free Surface Interaction (기포-자유표면 상호작용에 대한 수치적 고찰)

  • Yang Chan-Kyu;Kim Hyeon-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.48-57
    • /
    • 1999
  • This paper deals with the numerical simulation of the behavior of single bubble rising near the free surface. Volume fraction of fluid (VOF) method with continuum surface force (CSF) model, the well known method for two phase flow simulation is adopted. A bubble of spherical shape positioned beneath the free surface is assumed at the initial stage. The difference according to the fluid properties of surrounding medium is examined. Simulation results are depicted and explained with the time history of bubble shape, velocity field and vorticity distribution.

  • PDF

The Influence of Hi-flux Powders Characteristics on the Performance of Magnetic Powder Cores

  • Zhao, Tong Chun;Ma, Hong Qiu;Ding, Fu Chang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.451-452
    • /
    • 2006
  • The influence of Hi-flux powders characteristics on the performance of magnetic powder cores was studied. It was found that different cooling rate and nozzle configuration could change the shape and microstructure of powders. Smooth surface and spherical shape of powders were beneficial to improve DC bias performance and reduce core losses of magnetic powder core.

  • PDF

Pinning efficiency of austenite grain boundary by Cubic shaped TiN particle : Modification of Zener coefficient for Cubic shaped particle (입방체 TiN 석출물에 의한 오스테나이트 결정립 성장 억제 효과)

  • Mun, Jun-O;Yu, Jong-Geun;Lee, Chang-Hui;An, Yeong-Ho;Lee, Jong-Bong
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.158-160
    • /
    • 2005
  • Zener coefficient on cubic shaped particle was proposed. Most previous researches about Zener coefficient were developed on the assumption that the shape of particle is spherical. But, some particle has other shape, and modification of Zener coefficient needs with shape of particle. In this research, TiN particle that has a cubic shape was considered. A Zener coefficient of a cubic shape TiN was theoretically calculated with appropriate assumptions. And, using a semi-empirical method, Zener coefficient was also measured. Finally, the proposed Zener coefficient was proved by comparing with experimentally measured data.

  • PDF

EFFECT OF SPHERICAL SILICA FILLER ON THE PHYSICAL PROPERTIES OF EXPERIMENTAL COMPOSITES (구상형 실리카 필러가 실험적 복합레진의 물성에 미치는 효과)

  • Kang, Seung-Hoon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.88-99
    • /
    • 1999
  • The purpose of this study was to investigate the physical properties of experimental composite resins made with the spherical and crushed fillers. The 14 experimental composite resins containing 0, 5, 10, 15, 20 and 25%(w/w) in spherical filler group and 0, 10, 20, 30, 40, 50, 60 and 70%(w/w) in crushed filler group, incorporated in a Bis-GMA matrix (Aldrich Co., USA), were made with 1% ${\gamma}$-methoxy silane treated fillers. The polymer matrix was made by dissolving 0.7%(w/w) of benzoyl peroxide(Janssen Chemical Co. Japan) in methacrylate monomer, whereupon 0.7%(v/v) N,N-dimethyl-p-toluidine(Tokyo Kasei Co. Japan) was added to the monomer. The weight percentage of each specific particle size distribution could be determined from a knowledge of the specific gravity, the weight(w/w), and corresponding volume %(v/v) of the filler sample in resin monomer. In crushed silica group and spherical silica group, the diametral tensile strengths and compressive strengths were measured with Instron Testing Machine(No.4467), and analyzed in 14 experimental composite resins made by filler fractions. The shear bond strength of 14 experimental composite resins to bovine enamel was measured with universal testing machine(Instron No.4467). The fracture surfaces were sputter-coated with a gold film and investigated by SEM. The results were as follows; 1. The diametral tensile strength was tendency to increase in crushed silica group, but not in spherical silica group. The highest diametral tensile strength was found in 20% filler fractions of two groups. 2. The compressive strength was higher in 15%(w/w) and 20%(w/w) in spherical silica group than in crushed silica group, but not in spherical silica group. 3. The significant correlation was noticed in increase in shear bond strength in crushed silica group, but not in spherical silica group. 4. The significantly highest shear bond strength was noticed in 50% filler concentration in crushed silica group, and in 15% filler concentration in spherical silica group, it was not significant in relation. 5. In crushed silica group, cut surface of resin matrix and the interface between resin and filler is obvious. In spherical silica group, fractures that occurred through the filler particles were round in shape.

  • PDF