• Title/Summary/Keyword: spherical projection

Search Result 38, Processing Time 0.025 seconds

Fast Computation of the Visibility Region Using the Spherical Projection Method

  • Chu, Gil-Whoan;Chung, Myung-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.92-99
    • /
    • 2002
  • To obtain visual information of a target object, a camera should be placed within the visibility region. As the visibility region is dependent on the relative position of the target object and the surrounding object, the position change of the surrounding object during a task requires recalculation of the visibility region. For a fast computation of the visibility region so as to modify the camera position to be located within the visibility region, we propose a spherical projection method. After being projected onto the sphere the visibility region is represented in $\theta$-$\psi$ spaces of the spherical coordinates. The reduction of calculation space enables a fast modification of the camera location according to the motion of the surrounding objects so that the continuous observation of the target object during the task is possible.

FIRST ORDER HERMITE INTERPOLATION WITH SPHERICAL PYTHAGOREAN-HODOGRAPH CURVES

  • Kim, Gwang-Il;Kong, Jae-Hoon;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.73-86
    • /
    • 2007
  • The general stereographic projection which maps a point on a sphere with arbitrary radius to a point on a plane stereographically and its inverse projection have the pythagorean-hodograph (PH) preserving property in the sense that they map a PH curve to another PH curve. Upon this fact, for given spatial $C^1$ Hermite data, we construct a spatial PH curve on a sphere that is a $C^1$ Hermite interpolant of the given data as follows: First, we solve $C^1$ Hermite interpolation problem for the stereographically projected planar data of the given data in $\mathbb{R}^3$ with planar PH curves expressed in the complex representation. Second, we construct spherical PH curves which are interpolants for the given data in $\mathbb{R}^3$ using the inverse general stereographic projection.

Near-field Sonar Cross Section Analysis of Underwater Target Using Spherical Projection Method (구면투영법을 이용한 수중표적의 근거리장 소나단면적 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.695-702
    • /
    • 2008
  • In this paper, a new numerical method is proposed to analyze near-field sonar cross section of acoustically large-sized underwater targets such as submarines. A near-field problem is converted to a far-field problem using a spherical projection method with respect to the objective target. Then, sonar cross section is calculated with a physical optics well established in far-field acoustic wave scattering problems. The analysis results of a square flat plate compared with those obtained by other method show the accuracy of the proposed method. Moreover, it is noted that the sonar cross section is varied with respect to the targeting point as well as the range. Finally, numerical analysis results of real-like underwater target such as a submarine pressure hull are discussed.

Microlens Fabrication by Using Excimer Laser (엑사이머 레이저를 이용한 마이크로렌즈 제작)

  • 김철세;김재도;윤경구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 2003
  • A new microlens fabrication technique, the excimer laser lithography is developed. This bases on the pulsed laser irradiation and the transfer of a chromium-on-quartz reticle on to the polymer surface with a proper projection optics system. An excimer laser lithography system with 1/4 and 1/20 demagnification ratios was constructed first, and the photoablation characteristics of the PMMA and Polyimide were experimentally examined using this system. For two different shapes of microlenses, a spherical lens and a cylindrical lens, fabrication techniques were investigated. One for the spherical lens is a combination of the mask pattern projection and fraction effect. The other for the cylindrical lens is a combination of the mask pattern projection and the relative movement of a specimen. The result shows that various shapes of micro optical components can be easily fabricated by the excimer laser lithography.

Omnidirectional Environmental Projection Mapping with Single Projector and Single Spherical Mirror (단일 프로젝터와 구형 거울을 활용한 전 방향프로젝션 시스템)

  • Kim, Bumki;Lee, Jungjin;Kim, Younghui;Jeong, Seunghwa;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Researchers have developed virtual reality environments to provide audience with more visually immersive experiences than previously possible. One of the most popular solutions to build the immersive VR space is a multi-projection technique. However, utilization of multiple projectors requires large spaces, expensive cost, and accurate geometry calibration among projectors. This paper presents a novel omnidirectional projection system with a single projector and a single spherical mirror.We newly designed the simple and intuitive calibration system to define the shape of environment and the relative position of mirror/projector. For successful image projection, our optimized omnidirectional image generation step solves image distortion produced by the spherical mirror and a calibration problem produced by unknown parameters such as the shape of environment and the relative position between the mirror and the projector. Additionally, the focus correction is performed to improve the quality of the projection. The experiment results show that our method can generate the optimized image given a normal panoramic image for omnidirectional projection in a rectangular space.

A Note on Unavoidable Sets for a Spherical Curve of Reductivity Four

  • Kashiwabara, Kenji;Shimizu, Ayaka
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.821-834
    • /
    • 2019
  • The reductivity of a spherical curve is the minimal number of times a particular local transformation called an inverse-half-twisted splice is required to obtain a reducible spherical curve from the initial spherical curve. It is unknown if there exists a spherical curve whose reductivity is four. In this paper, an unavoidable set of configurations for a spherical curve with reductivity four is given by focusing on 5-gons. It has also been unknown if there exists a reduced spherical curve which has no 2-gons and 3-gons of type A, B and C. This paper gives the answer to this question by constructing such a spherical curve.

Proposal and Implementation of Intelligent Omni-directional Video Analysis System (지능형 전방위 영상 분석 시스템 제안 및 구현)

  • Jeon, So-Yeon;Heo, Jun-Hak;Park, Goo-Man
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.850-853
    • /
    • 2017
  • In this paper, we propose an image analysis system based on omnidirectional image and object tracking image display using super wide angle camera. In order to generate spherical images, the projection process of converting from two wide-angle images to the equirectangular panoramic image was performed and the spherical image was expressed by converting rectangular to spherical coordinate system. Object tracking was performed by selecting the desired object initially, and KCF(Kernelized Correlation Filter) algorithm was used so that robust object tracking can be performed even when the object's shape is changed. In the initial dialog, the file and mode are selected, and then the result is displayed in the new dialog. If the object tracking mode is selected, the ROI is set by dragging the desired area in the new window.

The implementation of spherical acoustical holography (구형좌표계에서 음향 홀로그래피의 적용)

  • Kim, Yong-Joe;Cho, Yong-Thung;Bolton, J.Stuart
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.410-415
    • /
    • 2002
  • In this article, spatial filtering procedures with application to spherical acoustical holography are discussed. Planar and cylindrical holography are the most widely used amongst the various nearfield acoustical holography techniques. However, when the geometry of a source is similar to a sphere, spherical holography may yield better results than other types of holography since there are no errors due to truncation of the sound field in the spherical case. Spatial filtering affects the accuracy of spherical acoustical holography critically, especially in the case of backward projection. Thus spatial filtering is essential for successful application of spherical holography. In the present work, various filtering methods were evaluated in simulations made using sound pressure fields of various types and with different levels of random spatial noise. It was found that a procedure based on eliminating spherical harmonic coefficients that contribute insignificantly to the total sound power of the source gave the best results on average of the different procedures considered here. Spherical holography procedures were also verified experimentally. Reliable results were obtained using the power filtering algorithm. Thus it was concluded that spherical holography combined with power filtering may prove to be a useful tool for noise source identification.

  • PDF

Distortions of Spherical Data in the Wavenumber Domain

  • Kim, Jeong-Woo;Lee, Dong-Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • Sampling rates become inconsistent when spatial data in the spherical coordinate are resampled with respect to latitudinal or longitudinal degree for mathematical processes such as Fourier Transform, and this results in distortions of the processed data in the wavenumber domain. These distortions are more evident in the polar regions. An example is presented to show such distortions during the recovery process of free-air gravity anomalies from ERS-1 satellite radar altimeter data from the Barents Sea in the Russian Arctic, and a method is presented to minimize the distortion using the Lambert Conformal Conic map projection. This approach was found to enhance the free-air gravity anomalies in both data and wavenumber domains.

A Sensing System of the Halbach Array Permanent Magnet Spherical Motor Based on 3-D Hall Sensor

  • Li, Hongfeng;Liu, Wenjun;Li, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.352-361
    • /
    • 2018
  • This paper proposes a sensing system of the Halbach array permanent magnet spherical motor(PMSM). The rotor position can be obtained by solving three rotation angles, which revolves around 3 reference axes of the stator. With the development of 3-D hall sensor, the position identification problem of the Halbach array PMSM based on rotor magnetic field is studied in this paper. A nonlinear and serious coupling relationship between the rotation angles and the measured magnetic flux density is established on the basis of the rotation transformation theory and the magnetic field model. In order to get rid of the influence on position detection caused by the harmonics of rotor magnetic field and the stator coil magnetic field, a sensor location combination scheme is proposed. In order to solve the nonlinear equation fast and accurately, a new position solution algorithm which combines the merits of gradient projection and particle swarm optimization(PSO) is presented. Then the rotation angles are obtained and the rotor position is identified. The validity of the sensing system is verified through the simulation.