• Title/Summary/Keyword: spherical panel

Search Result 33, Processing Time 0.034 seconds

Design of small impact test device for concrete panels subject to high speed collision

  • Kim, Sanghee;Jeong, Seung Yong;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • Five key items were used to create an economical and physically small impact test device for concrete panels subject to high speed collision: an air-compressive system, carbon steel pipe, solenoid valve, carrier and carrier-blocking, and velocity measurement device. The impact test device developed can launch a 20 mm steel spherical projectile at over 200 m/s with measured impact and/or residual velocity. Purpose for development was to conduct preliminary materials tests, prior to large-scale collision experiments. In this paper, the design process of the small impact test device was discussed in detail.

Current Research Trend on Recycling of Waste Flat Panel Display Panel Glass (폐 평판디스플레이 패널유리의 재활용 연구 동향)

  • Shin, Dongyoon;Kang, Leeseung;Park, Jae Layng;Lee, Chan Gi;Yoon, Jin-Ho;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2015
  • Although Korea is a top market sharing and world leading producer and developer of flat panel display devices, relevant recycling technology is not up to her prestigious status. Besides, most of the waste glass arising from flat panel displays is currently land-filled. The present paper mainly reviews on development of recycling systems for waste TFT-LCD glass from end-of-life LCD TVs and monitors and TFT-LCD process waste of crushed glass particles with target end uses of raw material for high strength concrete pile and glass fibers, respectively. Waste LCD glass was recycled to fabricate ingredients for high strength concrete piles with enhanced physical properties and spherical foam products. The waste LCD glass recycling technology is already developed to fabricate long and short fibers at commercial level. In view of these, future R & D on waste LCD glass materials is to be directed toward implementation of commercial materials recycling system therefrom.

Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant (Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자)

  • Roh, Hyun Sook;Lee, Chang Hee;Yoon, Ho Shin;Kang, Yun Chan;Park, Hee Dong;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.752-756
    • /
    • 2002
  • Green-emitting $Zn_2SiO_4:Mn$ phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with $Gd^{3+}/Li^+$, which replaces $Si^{4+}$ site in the willemite structure, was performed to improve the luminous properties of the $Zn_2SiO_4:Mn$ phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The $Gd^{3+}/Li^+$ codoping amount affected the luminous characteristics of $Zn_2SiO_4:Mn$ phosphors. The codoping with proper amounts of $Gd^{3+}/Li^+$ improved both the photoluminescence efficiency and decay time of $Zn_2SiO_4:Mn$ phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of $Zn_2SiO_4:Mn$ phosphors. The $Zn_{1.9}SiO_4:Mn_{0.1}$ phosphor particles containing 0.1 mol% $Gd^{3+}/Li^+$ co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at $1,145^{\circ}C$.

Control of Particle Size and Luminescence Property in Zn$_2$SiO$_4$:Mn Green Phosphor (Zn$_2$SiO$_4$:Mn 녹색형광체의 입도제어 및 발광특성)

  • Seong, Bu-Yong;Jeong, Ha-Gyun;Park, Hui-Dong
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.636-640
    • /
    • 2001
  • In order to improve the optical Performance of green emitting phosphor for plasma display panel (PDP) application, the wet chemical method for preparing $Zn_{2-x}$ $SiO_4$:xMn (xi=0.02. 0.08) phosphor was designed. The spherical phosphor particles were obtained and the size can be between 0.5$\mu\textrm{m}$ and 2$\mu\textrm{m}$. The formation of phosphor, which had the willemite structure, was completed at relatively low temperature of 108$0^{\circ}C$. Also, photoluminescence Properties of the phosphors prepared were investigated under vacuum ultraviolet excitation. In particular, the emission intensity of Zn$_2$SiO$_4$:0.08Mn phosphor having the 1$\mu\textrm{m}$ of particle size was higher than that of commercial phosphor by 40%. The decay time of zinc silicate powder prepared as containing 8 mole% of manganese has been measured as 7.8ms.

  • PDF

Control of Particle Size and Luminescence Property in Zn$_2$SiO$_4$:Mn Green Phosphor (Zn$_2$SiO$_4$:Mn 녹색형광체의 입도제어 및 발광특성)

  • 성부용;정하균;박희동
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.363-363
    • /
    • 2001
  • In order to improve the optical Performance of green emitting phosphor for plasma display panel (PDP) application, the wet chemical method for preparing $Zn_{2-x}$ $SiO_4$:xMn (xi=0.02. 0.08) phosphor was designed. The spherical phosphor particles were obtained and the size can be between 0.5$\mu\textrm{m}$ and 2$\mu\textrm{m}$. The formation of phosphor, which had the willemite structure, was completed at relatively low temperature of 108$0^{\circ}C$. Also, photoluminescence Properties of the phosphors prepared were investigated under vacuum ultraviolet excitation. In particular, the emission intensity of Zn$_2$SiO$_4$:0.08Mn phosphor having the 1$\mu\textrm{m}$ of particle size was higher than that of commercial phosphor by 40%. The decay time of zinc silicate powder prepared as containing 8 mole% of manganese has been measured as 7.8ms.

A Study on the Internet Broadcasting Image Processing based on Offloading Technique on the Mobile Environments (모바일 환경에서 오프로딩 기술 기반 인터넷 방송 영상 처리에 관한 연구)

  • Kang, Hong-gue
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.63-68
    • /
    • 2018
  • Offloading is a method of communicating, processing, and receiving results from some of the applications performed on local computers to overcome the limitations of computing resources and computational speed.Recently, it has been applied in mobile games, multimedia data, 360-degree video processing, and image processing for Internet broadcasting to speed up processing and reduce battery consumption in the mobile computing sector. This paper implements a viewer that enables users to convert various flat-panel images and view contents in a wireless Internet environment and presents actual results of an experiment so that users can easily understand the images. The 360 degree spherical image is successfully converted to a plane image with Double Panorama, Quad, Single Rectangle, 360 Overview + 3 Rectangle depending on the image acquisition position of the 360 degree camera through the interface. During the experiment, more than 100 360 degree spherical images were successfully converted into plane images through the interface below.

Preparation and Luminescence Properties of $Y_{2-x}Gd_xO_3:Eu$ Phosphors by Pechini Method (페치니법에 의한 $Y_{2-x}Gd_xO_3:Eu$ 형광체의 제조와 발광 특성)

  • Lee, Dong-Kyu;Lee, Jin-Hwa;Ahn, Byung-Chul;Jun, Sang-Bae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.207-214
    • /
    • 2006
  • $Y_{2-x}Gd_xO_3:Eu$, phosphors for plasma display panel(PDP), were prepared by Pechini method which use yttriun chloride, gadolinium chloride, and europium oxide as starting materials. This method is a different way to the synthesis of europium(Eu)-doped phosphors, and it consists of the formation of a polymeric resin obtained by polyesterification between metal chelate compounds and a polyfunctional alcohol. This needs lower temperature than solid-state synthetic method. The prepared $Y_{2-x}Gd_xO_3:Eu$ phosphor particles had spherical shape and coherence. The luminescence intensity of $Y_{2-x}Gd_xO_3:Eu$ phosphor particles increased according to the increase of gadolinium(Gd) content(to 0.8mol%), and $Y_{1.2}Gd_{0.8}O_3:Eu$ phosphors had the highest luminescence intensity under vacuum ultra violet(VUV) excitation. The optimum concentration of Eu in the phosphor and optimum calcination temperature was 3wt% and $1100^{\circ}C$. The prepared phosphors were consist of particle, and its size was between 100nm and 150nm. Among the different polyfunctional alcohols, diethylene glycol(DEG) improved the luminescence intensities of phosphors more than other additives. The Pechini method proved that it is demonstrated to be suitable for the synthesis of phosphors used in PDP.

Effect of pH and Drying Temperature on Luminescent Properties of Zn2SiO4:Mn,Al Green Phosphors by Sol-Gel Technique (졸-겔 합성에서 pH 및 건조온도가 Zn2SiO4:Mn,Al 녹색 형광체의 발광특성에 미치는 영향)

  • Sung, Bu-Yong;Han, Cheong-Hwa;Park, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.333-337
    • /
    • 2005
  • In order to improve the performance of green emitting phosphors for plasma display panel, the $Zn_2SiO_4:Mn,Al$ phosphors were synthesized using sol-gel technique and studied using SEM and VUV photoluminescence spectrometer. pH values of the starting solutions (pH = 0.5$\~$2.34) were controled by HCl as the catalysis of hydrolysis and wet gels were dried at $80^{\circ}C$ and $120^{\circ}C$, respectively. We investigated the effects of pH and drying temperatures during sol-gel processes. The results indicated that the phosphor prepared at pH = 1 showed the maximum emission intensity in both drying conditions and the effect of pH of the starting solution on morphology were increased with particle size as HCl and phosphor dried at high temperature showed more spherical and smaller particles than at low.

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Impact Resistance of Steel Fiber-Reinforced Concrete Panels Under High Velocity Impact-Load (고속충격하중을 받는 강섬유보강콘크리트 패널의 내충격성능)

  • Kim, Sang-Hee;Kang, Thomas H.K.;Hong, Sung-Gul;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.731-739
    • /
    • 2014
  • This paper describes the evaluation of the impact performance of steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens with panel thickness to ball diameter (h/d) ratios of 3.5 or less were tested with variables of steel fiber volume fraction, panel thickness, impact velocity, and aggregate size. Test results were compared with each other to evaluate the impact resistance. The results showed that the percentage of weight and surface loss decreased as the steel volume fraction increased. However, the penetration depth increased with up to steel fiber volume fraction of 1.5%. Particularly the results of specimens with 20 mm aggregates showed poorer performance than those with 8 mm aggregates. The results also confirmed that the impact performance prediction formulas are conservative with (h/d) ratios of 3.5 or less. Despite the conservative predictions, the modified NDRC formula and ACE formula predict the impact performance more consistently than the Hughes formula.