• Title/Summary/Keyword: speed-density models

Search Result 99, Processing Time 0.036 seconds

Thermohydrodynamic Bubbly Lubrication Analysis of High-Speed Journal Bearing (공기 혼합오일에 대한 고속 저어널 베어링 열유체 윤활 해석)

  • 전상명
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.201-211
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of aerated oil in fluid-film bearing. Convection to the walls, mixing with supply oil and re-circulating oil, and some degree of journal misalignment are considered. The considered Parameters for the study of bubbly lubrication are oil aeration level, air bubble size, shaft misalignment and shaft speed. The results show that deliberate oil aeration can more clearly bring on the increasing load capacity under high-speed operation of plain journal hearing than previous normal speed operation. And the load capacity may be increased more by oil aeration under the conditions of shaft misalignment and the increasing speed.

  • PDF

Estimation of swimming angle and body impedance of sandfish (Arctoscopus japonicus) (도루묵의 체내 임피던스 및 유영자세각 평가)

  • YOON, Euna;HWANG, Doo-Jin;OH, Wooseok;LEE, Hyungbeen;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • Density and sound speed contrasts (g and h, respectively), and swimming angle were measured for sandfish (Arctoscopus japonicus) without swimbladder. The density contrast was measured by the volume displacement method while the sound speed contrast was measured by the acoustic measurements of travel time (time-of-flight method). The swimming angle was measured by dividing it into daytime, nighttime, daytime feeding and nighttime feeding. The g was 1.001 to 1.067 with an average (± standard deviation) of 1.032 (± 0.017), and the h was 1.007 to 1.022 with an average (± standard deviation) of 1.015 (± 0.003). The swimming angles (mean ± standard deviation) were 16.8 ± 10.3° during the daytime, 1.9 ± 12.3° during the nighttime, 30.2 ± 12.6° in the daytime feeding and 35.0 ± 13.2° in the nighttime feeding. These results will provide important parameters input to calculate theoretical scattering models for estimating the acoustic target strength of sandfish.

Optimal Design of Five-Phase Permanent Magnet Assisted Synchronous Reluctance Motor for High Speed Railroad Traction System (고속철도 추진용 5상 영구자석 저감형 동기전동기의 최적설계)

  • Baek, Jeihoon;Kim, Myung Yong;Yi, Kyung-Pyo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.588-594
    • /
    • 2017
  • Permanent magnet assisted synchronous reluctance motors (PMa-SynRM) show higher efficiency and power density compared to conventional induction motors for high speed railroad traction systems. Furthermore, 5-phase PMa-SynRMs have lower torque ripple and higher power density than 3-phase systems. Therefore, the 5-phase PMa-SynRM is suitable for high-speed railway traction systems. In this study, 3kw 3-phase and 5-phase PMa-SynRM models were optimized using lumped parameter model and genetic algorithm, and their characteristics were compared. The optimized models are fine-tuned using finite element analysis. The final models of the 3-phase and 5-phase PMa-SynRMs are fabricated and tested to verify the analysis results.

Development of FE Models of the Heavy Obstacle for the EU-TSI and Domestic Rolling Stock Safety Regulations and Application to Collision Evaluation of the Korean High-speed EMU (EU의 TSI 규정 및 국내 철도차량안전기준의 대형장애물 유한요소모델 개발과 분산형 고속열차의 충돌성능평가에 적용)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • The purpose of this paper is to develop two kinds of finite element models for the heavy deformable obstacle defined in grade crossing collision scenario of the Europe TSI and the Korean rolling stock safety regulations and to apply the crashworthiness evaluation for the Korean high-speed EMU with the FE model. The numerical models of the heavy obstacle were changed from a past rigid one to a current deformable one whose stiffness requirement should be verified by a collision simulation defined in the regulations. Through several trial simulations, two types of numerical models for the heavy obstacle were developed, which satisfied physical properties specifies in the regulations. One is a solid-type obstacle with uniform density and the other is a shell-type. With the obstacles developed in this study, the grade crossing collision scenario for Korean high-speed EMU was simulated and evaluated for the two-type obstacle models. From the simulation results, the shell and solid-type obstacles showed quite different behaviors after collision, and the shell type model gave more severe results.

Comparative analysis of the wind characteristics of three landfall typhoons based on stationary and nonstationary wind models

  • Quan, Yong;Fu, Guo Qiang;Huang, Zi Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.269-285
    • /
    • 2020
  • The statistical characteristics of typhoon wind speed records tend to have a considerable time-varying trend; thus, the stationary wind model may not be appropriate to estimate the wind characteristics of typhoon events. Several nonstationary wind speed models have been proposed by pioneers to characterize wind characteristics more accurately, but comparative studies on the applicability of the different wind models are still lacking. In this study, three landfall typhoons, Ampil, Jongdari, and Rumbia, recorded by ultrasonic anemometers atop the Shanghai World Financial Center (SWFC), are used for the comparative analysis of stationary and nonstationary wind characteristics. The time-varying mean is extracted with the discrete wavelet transform (DWT) method, and the time-varying standard deviation is calculated by the autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model. After extracting the time-varying trend, the longitudinal wind characteristics, e.g., the probability distribution, power spectral density (PSD), turbulence integral scale, turbulence intensity, gust factor, and peak factor, are comparatively analyzed based on the stationary wind speed model, time-varying mean wind speed model and time-varying standard deviation wind speed model. The comparative analysis of the different wind models emphasizes the significance of the nonstationary considerations in typhoon events. The time-varying standard deviation model can better identify the similarities among the different typhoons and appropriately describe the nonstationary wind characteristics of the typhoons.

Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections

  • Kim, Roksoon;Gopalswamy, Nat;Moon, Yongjae;Cho, Kyungsuk;Yashiro, Seiji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.114.1-114.1
    • /
    • 2012
  • To measure the magnetic field strength in the solar corona, we examined 10 fast (>1000 km/s) limb coronal mass ejections (CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (Rs). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km/s and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  • PDF

Design of Coaxial Magnetic Gear for Improvement of Torque Characteristics

  • Shin, H.M.;Chang, J.H.
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.393-398
    • /
    • 2014
  • This paper proposes new types of models that have coaxial magnetic gear (CMG) configurations to increase torque transmission capability. They have flux concentrating structures at the outer low speed rotor, and permanent magnets (PMs) are embedded in the space between stationary pole pieces. The torque performances of the proposed models are compared with those of a basic CMG model. The harmonic torque components due to air gap field harmonics are also analyzed to investigate the torque contribution of each harmonic by using finite element analysis (FEA) and the Maxwell stress tensor. The proposed CMG model is optimized to have high torque density with low torque ripples by response surface methodology (RSM). Compared to the basic CMG model, the proposed model has a huge increase in transmitted torque density, and is very advantageous in term of PM use.

The Effect of Aerated Oil Considering Live Oil Surface Tension on High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The live oil surface tension is considered as functions of temperature, API gravity and air volume ratio. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction farce may be changed so visibly for the high speed bearing operation.

  • PDF

The Effect of Eccentricity on Aerated Oil in High-Speed Journal Bearing

  • Chun, Sang Myung
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The influence of aerated oil on a high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction force may be changed so visibly for the high speed bearing operation.

  • PDF

Thermohydrodynamic Bubbly Lubrication Analysis of High-Speed Journal Bearing (공기 혼합오일에 대한 고속 저어널 베어링 열유체 윤활 해석)

  • 전상명
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.321-334
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing Is examined by thermohydrodynamic lubrication theory to lubrication with mixtures of a Newtonian liquid and an ideal gas. For this purpose, analytical models for viscosity and density of aerated oil in fluid-film bearing are applied. Convection to the walls, mixing with supply oil and re-circulating oil, and some degree of journal misalignment are considered. The results show that deliberate oil aeration can increase the load capacity of high-speed plain Journal bearing. And the load capacity is increased more by oil aeration under the conditions of shaft misalignment and higher speed.