Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.4.393

Design of Coaxial Magnetic Gear for Improvement of Torque Characteristics  

Shin, H.M. (Electrical Engineering Department, Dong-A University)
Chang, J.H. (Electrical Engineering Department, Dong-A University)
Publication Information
Abstract
This paper proposes new types of models that have coaxial magnetic gear (CMG) configurations to increase torque transmission capability. They have flux concentrating structures at the outer low speed rotor, and permanent magnets (PMs) are embedded in the space between stationary pole pieces. The torque performances of the proposed models are compared with those of a basic CMG model. The harmonic torque components due to air gap field harmonics are also analyzed to investigate the torque contribution of each harmonic by using finite element analysis (FEA) and the Maxwell stress tensor. The proposed CMG model is optimized to have high torque density with low torque ripples by response surface methodology (RSM). Compared to the basic CMG model, the proposed model has a huge increase in transmitted torque density, and is very advantageous in term of PM use.
Keywords
coaxial magnetic gear; flux concentrating structure; magnetic gearing effect; torque characteristics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Atallah and D. Howe, IEEE Trans. Magn. 37, 2844 (2001).   DOI   ScienceOn
2 K. Atallah, S. D. Calverley, and D. Howe, IEE Proc-Electr. Power Appl. 151, 135 (2004).   DOI   ScienceOn
3 P. O. Rasmussen, T. O. Andersen, F. T. Jorgensen, and O. Nielsen, IEEE Trans. Ind. Appl. 41, 764 (2005).   DOI   ScienceOn
4 X. Liu, K. T. Chau, J. Z. Jiang, and C. Yu, J. Appl. Phys. 105, 07F101 (2009).   DOI
5 X. Li, K. T. Chau, M. Cheng, W. Hua, and Y. Du, Proceedings of the International Conference on Electrical Machine and Systems (ICEMS) (2011) pp. 1-4.
6 Xianglin Li, K. T. Chau, Ming Cheng, Wei Hua, and Yi Du, Proceedings of the International Conference on Electrical Machine and Systems (ICEMS) (2013) pp. 634-638.
7 K. J. Meessen, J. J. H. Paulides, and E. A. Lomonova, IEEE Trans. Magn. 49, 536 (2013).   DOI   ScienceOn
8 C. M. Spargo, B. C. Mecrow, and J. D. Widmer, IEEE Trans. Magn. 50, 1 (2014).
9 X. K. Gao, T. S. Low, S. X. Chen, and Z. J. Liu, IEEE Trans. Magn. 37, 2814 (2001).   DOI   ScienceOn
10 J. T. Li, Z. J. Liu, M. A. Jabbar, and X. K. Gao, IEEE Trans. Magn. 40, 1176 (2004).   DOI   ScienceOn
11 R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response Surface Methodology (2008).
12 L. Jian and K. T. Chau, IEEE Trans. Energy Convers. 25, 319 (2010).   DOI   ScienceOn