• Title/Summary/Keyword: speed ripple

Search Result 359, Processing Time 0.035 seconds

Compensation Algorithm for Periodic Torque Ripple of AC Motors (교류전동기의 주기적인 토크리플 보상알고리즘)

  • Kim, Byong-Seob;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.551-557
    • /
    • 2006
  • The electrical frequency synchronized periodic torque ripple exits in the AC motor. There are various sources of torque ripple in AC motor such as current measurement error, dead time, etc. This paper proposes a compensation algorithm which suppresses undesired side effect known as the periodic torque ripple of AC motor. The torque ripple compensation classified as the speed ripple detector and torque ripple compensator. This paper proves a speed ripple minimization at steady state by analysis of torque ripple compensator. A new speed ripple detector improves the performance of torque ripple compensation algorithm. The simulation and experimental results show that the compensation algorithm is effective and the torque ripple compensation method improves the performance of speed ripple detector by eliminating torque ripples effectively.

Speed Control Method for Reduction Speed-ripple by Periodic Load Torque of AC Motors (교류전동기의 주기적인 부하토크에 의한 속도리플을 저감하는 속도제어기법)

  • Jung, Sung-Min;Kim, Min;Choi, Jong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.409-410
    • /
    • 2012
  • Speed output has ripple such as periodic torque ripple if load torque with periodic ripple was injected in AC motor. In this paper, it is proposed method to reduce speed ripple through novel speed control method. It replaces algorithm to compensate torque ripple. Proposed method demonstrated through simulation using MATLAB SIMULINK.

  • PDF

PIR Speed Control Method of AC Motors Considering Time Delay in Speed Information

  • Lee, Jung-Ho;Choi, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2289-2297
    • /
    • 2017
  • Applying a periodic load torque to an AC motor generates a ripple, which is synchronized to the frequency of the periodic load torque, at the speed of the motor. Consequently, numerous studies have focused on reducing the speed ripple caused by the load torque. However, it is difficult to reduce the speed ripple when there is a time delay in acquiring speed information, such as that from a sensorless control. Therefore, we propose a speed control method for reducing speed ripples caused by a periodic load torque when there is a time delay in acquiring the speed information. The proposed method is verified by conducting simulations using the Simulink program from MATLAB, and by applying the method to an actual motor in which speed ripples occur due to a periodic load torque that is synchronized with the speed of the motor.

Selection of pulse number and modulation index for minimum speed ripple in trapezoidal CSI-PWM (Trapezoidal PWM 전류원 인버터에서 최소 Speed Ripple을 위한 펄스 수 및 변조도의 결정)

  • Kwon, Woo-Hyeon;Goo, Bon-Ho;Lee, Chi-Hwan;Lee, Chang-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.127-129
    • /
    • 1988
  • Square-wave current source inverter drives suffer from torque pulsation and speed variation at low speed. Attempts to minimize these problems, CSI PWM strategies have been reported. It is shown that these PWM strategies are based on unnecessarily restrictive modulation laws. In this paper, trapezoidal PWM strategy for CSI is investigated theoratically by double fourier series and we proposed Harmonic Speed ripple Factor(HSF) that is independent of motor parameters and load conditions. Speed ripple are considered in T-PWM and square wave inverter by HSF. We obtain modulation index(M) and carrier ratio (CR) for minimum speed ripple.

  • PDF

Design of the Modified PID Speed Controller to Reduce the Speed Ripple (속도 리플 억제를 위한 수정된 PID 속도 제어기의 설계)

  • Kim, Hong-Min;Choo, Young-Bae;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • PMSM(Permanent Magnet Synchronous Motor) has periodic torque ripple from the cogging torque and load conditions. This paper proposes the modified PID speed controller to reduce the speed ripple of the PMSM. The proposed modified PID controller uses a selective D(Differential) control term according to the speed error and the differential of the speed error. The proposed speed controller produces an additional torque reference such as torque compensator based on PI controller according to the speed error and the differential of the speed error, and it can reduce the vibration of the conventional D-control term with reduced speed ripple. Since the additional torque reference of the proposed speed controller is changed by the sign of the speed error and the differential of the speed error, a simple function to determine the sign of the error is used to produce the compensated torque. The proposed control scheme is verified by the computer simulation and the experiments.

Online Load Torque Ripple Compensator for Single Rolling Piston Compressor (싱글 로터리 컴프레셔의 온라인 부하 토크리플 보상기)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Given their low cost, single rolling piston compressors (SRPC) are utilized in low-power room air-conditioning systems. The SRPC cycle is composed of one compression and discharge process per mechanical rotation. The load torque is high during the compression process of the refrigerants and low during the discharge process of the refrigerants. This load torque variation induces a speed ripple and severe vibration, which cause fatigue failures in the pipes and compressor parts, particularly under low-speed conditions. To reduce the vibration, the compressor usually operates at a high-speed range, where the rotor and piston inertia reduce the vibration. At a low speed, a predefined feed-forward load torque compensator is used to minimize the speed ripple and vibration. However, given that the load torque varies with temperature, pressure, and speed, a predefined load torque table based on one operating condition is not appropriate. This study proposes an online load torque compensator for SRPC. The proposed method utilizes the speed ripple as a load torque ripple factor. The speed ripple is transformed into a frequency domain and compensates each frequency harmonic term in an independent feed-forward manner. Experimental results are presented to verify the proposed method.

Decision of Modulation Index of Current-Source TPWM Inverter for Minimization of Speed Ripple and Position Error (속도맥동 및 위치오차를 최소로 하는 전류원 TPWM 인버터의 변조도 결정)

  • 구본호;권우현;김수중
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1819-1828
    • /
    • 1989
  • In this paper, we determined the modulation index for minimization of speed ripple and position error using maximum speed ripple (SRF) and maximum position error(PEF) in current source TPWM inverter. Through computer simulation, we compared with total current harmonic distortion, SRF and PEF for square wave modulation method and TPWM method. As a result, it turns out that square wave modulation method is superior to TPWM method of 3 pulses per half cycle in speed ripple and position error contents. And TPWM is better than square wave method when pulse number is more than 5. Also, in these pulse numbers, moduladtion index of minimum speed ripple and munimum position error is 0.91.

  • PDF

Study on Speed Ripple Reduction Algorithm in Sensorless Controlled IPMSM (IPMSM 센서리스 제어에서의 속도리플저감 알고리즘에 관한 연구)

  • Lee, Song-Cheol;Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.249-253
    • /
    • 2016
  • In this study, a harmonic-pulsation-compensator (HPC) is presented to reduce a periodic speed ripple in IPMSM. A proportional-integral compensator in HPC is proposed instead of the existing integral compensator to reduce the speed ripple more rapidly. A formula to calculate a rotation angle is also proposed, making compensation optimal in sensored and sensorless controls. The validity of the proposed algorithm is verified by experiments.

Reduction of Electromagnetic Torque Ripple in High-Speed, High-Load Brushless DC Motors used for Automobile Parts (자동차 부품용 고속, 고부하 BLDC 모터내의 전자기적 토크 맥동 저감)

  • 황상문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.39-46
    • /
    • 1998
  • For permanent magnet brushless DC motors used for high speed fuel pumps, torque ripple is an important origin of vibration, acoustic noise and speed fluctuation. In this paper, the output torque profile of a PM motor with one phase energized is decomposed into the commutation torque, the reluctance torque and the armature reaction torque according to their source origins. It verifies that the output torque profile is qualitatively equivalent to the BEMF profile for low reluctance motors. This paper discusses the effect of magnet pole shaping and magnet arc length on the output torque and torque ripple. A magnet edge shaping is proposed to design a trapezoidal BEMF motor without torque ripple, with minimal sacrifice of the maximum output torque.

  • PDF

Improvement of Speed Ripple in Low Speed Range for PMSM using Observer (관측자를 이용한 영구자석형 동기모터의 저속영역 속도리플 개선)

  • 김정태;노철원;최종률
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.65-69
    • /
    • 1997
  • Generally, we often use a speed sensor based on a rotary encoder and we can obtain a speed information by counting the increased or decreased number of encoder pulses in a sampling period. However, these speed measurement systems do not inherently produce a true, instantaneous speed information and them the speed ripple is generated by speed measurement errors. In order to overcome this problem, speed observer is used for the accurate speed measurement and improvement of speed ripple for Permanent Magnet Synchronous Motor (PMSM) in this paper. Speed observer estimates the instantaneous speed at each sampling instant. This estimated speed signal is then used as the speed feedback signal for the speed loop control. The proposed speed observer system is proved simulation using SABER simulation S/W.

  • PDF