• 제목/요약/키워드: speed of objects

Search Result 500, Processing Time 0.026 seconds

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.

Performance Analysis of the Localization Compensation Algorithm for Moving Objects Using the Least-squares Method (최소자승법을 적용한 이동객체 위치인식 보정 알고리즘 성능분석)

  • Jung, Moo Kyung;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.9-16
    • /
    • 2014
  • The localization compensation algorithm for moving objects using the least-squares method is suggested and the performance of the algorithm is analyzed in this paper. The suggested compensation algorithm measures the distance values of the mobile object moving as a constant speed by the TMVS (TWR Minimum Value Selection) method, estimates the location of the mobile node by the trilateration scheme based on the values, and the estimated location is compensated using the least-squares method. By experiments, it is confirmed that the localization performance of the suggested compensation algorithm is largely improved to 58.84% and 40.28% compared with the conventional trilateration method in the scenario 1 and 2, respectively.

A Methodology Study for Estimating the Benefits of Tilting Train Deployment (틸팅열차 투입에 따른 추정가능한 편익계상 연구)

  • Lee, Jin-Sun;Kim, Kyoung-Tae;Eom, Jin-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.700-706
    • /
    • 2009
  • Unlike high-speed KTX trains and dual track railways, most single-track railways are not popular among passengers because of long travel hours. As a solution to the problem, tilting trains will be deployed along the conventional line. Tilting train has a mechanism that enables increased speed on regular and curved railway tracks. As a train rounds a curve at speed, objects inside the train experience centrifugal force. This can cause packages to slide about or seated passengers to feel squashed by the outboard armrest due to its centripetal force, and standing passengers to lose their balance. Tilting trains possess a top speed of up to 180 km per hour as opposed to the previous 140 km per hour, so allow the train to pass curve at higher speed without affecting passenger comfort. This paper describes the methodology study to estimate the benefits, especially on the extra benefits in case of tilting actuation.

An Improved Snake Algorithm Using Neighbouring Edges (근접 에지를 이용한 개선된 스네이크 알고리즘)

  • Jang, Seok-Woo;On, Jin-Wook;Kim, Gye-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.11
    • /
    • pp.866-870
    • /
    • 2010
  • This paper presents an improved Snake algorithm that contains additional energy term related to adjacent edges. The suggested algorithm represents the distance between an adjacent edge and the current cell as energy, and extracts object contours more effectively by including the energy tenn to the whole energy function. The adjacent edge-based snake algorithm not only make it possible to detect object boundaries which are concave, but also can detect the boundaries of complex objects without weight adjustment. Experimental results show that the proposed method extracts object boundaries more accurately than other existing methods without loss of speed.

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF

3D Markov chain based multi-priority path selection in the heterogeneous Internet of Things

  • Wu, Huan;Wen, Xiangming;Lu, Zhaoming;Nie, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5276-5298
    • /
    • 2019
  • Internet of Things (IoT) based sensor networks have gained unprecedented popularity in recent years. With the exponential explosion of the objects (sensors and mobiles), the bandwidth and the speed of data transmission are dwarfed by the anticipated emergence of IoT. In this paper, we propose a novel heterogeneous IoT model integrated the power line communication (PLC) and WiFi network to increase the network capacity and cope with the rapid growth of the objects. We firstly propose the mean transmission delay calculation algorithm based the 3D Markov chain according to the multi-priority of the objects. Then, the attractor selection algorithm, which is based on the adaptive behavior of the biological system, is exploited. The combined the 3D Markov chain and the attractor selection model, named MASM, can select the optimal path adaptively in the heterogeneous IoT according to the environment. Furthermore, we verify that the MASM improves the transmission efficiency and reduce the transmission delay effectively. The simulation results show that the MASM is stable to changes in the environment and more applicable for the heterogeneous IoT, compared with the other algorithms.

Updated Object Extraction in Underground Facility based on Centroid (중심점 기반 지하시설물 갱신객체 추출 기술)

  • Kim, Kwagnsoo;Lee, Kang Woo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.553-559
    • /
    • 2020
  • In order to prevent subsidence in urban areas, which is a major cause of damage to aging underground facilities, an integrated underground space map is being produced for systematic management of underground facilities. However, there is a problem of delaying the update time because an unupdated underground facility object is included in the process of updating the underground space integrated map. In this paper, we proposed a method to shorten the update time of the integrated map by selecting only the updated objects required for the update process of the underground space integrated map based on the central point of the underground facilities. Through the comparison of the centroid, the number of search targets is greatly reduced to shorten the search speed, and the distance of the actual location values between the two objects is calculated whether or not the objects are the same. The proposed method shows faster performance as the number of data increases, and the updated object can be reflected in the underground space integrated map about four times faster than the existing method.

A Study on Multi-Object Control Method Using Smartphone Bluetooth Communication and the Methodologies of Convergence Research (스마트폰의 블루투스 통신을 이용한 다중 오브젝트 제어방법 및 장치에 관한 융합연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.341-347
    • /
    • 2015
  • Since the advent of Apple's iPhone, the smartphone industry has been producing new technologies and concepts at an accelerated pace. The speed of progress in this sector is exponentially increasing in accordance with Moore's Law, and smartphones are rapidly changing various aspects of human life. Especially, object control technologies using smartphones are being utilized in various sectors, including robots, home automation, and smart objects. However, the current smartphone object control technology is limited in terms of multicontrol. This study proposes the combined usage of the Bluetooth and Zigbee Modules for multiple object control using smartphones, and presents the necessary application design properties and the methodology for Zigbee communication. The study is an attempt at a territorial expansion of design, as a proposal of new methods for utilizing smartphones in the age of smart objects.

Development of Convergence Smart Home Platform based on Image Processing and Sensor Network in IoT Environment (IoT환경에서의 센서 네트워크와 영상처리 기반의 융합 스마트 홈 플랫폼 개발)

  • Ahn, Ye-Chan;Lee, Jeong-Pil;Lee, Jae-Wook;Song, Jun-Kwun;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.3
    • /
    • pp.37-41
    • /
    • 2016
  • In this thesis, we sought to build a home and business environment based on the rapid prototyping technology and network technologies that enabled rapid access to high-speed technologies and technologies. Using the analytic algorithm for image processing techniques, using the analytic algorithm for analyzing and tracking objects in the OpenCV library, trace objects and track objects and control various sensors. It also wants to implement a platform enabling various sensors to collect and record various services by controlling and connecting various sensors through the master Single board and the slave single.

Improving the frequency domain resolution of Wireless signal for observing the Doppler frequency (도플러 주파수 관찰을 위한 무선 신호의 주파수 영역 해상도 향상)

  • Hong, Yerin;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2270-2278
    • /
    • 2017
  • There are many research to find not only user data but also physical information about objects or human in radio signals. And we can obtain physical information from the wireless signals such as RSSI (Received Signal Strength Indicator), Doppler frequency and other values. For example, the Doppler frequency is generated by the object moving physically in wireless signals used for communication. By analyzing the Doppler frequency, the moving speed and direction of the object can be predicted. In this paper, we study the previous research which is to detect the moving objects or human using wireless signals, 802.11a signals. We introduce and verify the method to improve the frequency domain resolution of commercial 802.11a receivers to observe the doppler frequency and obtain the information of the moving objects or human.