• Title/Summary/Keyword: speed estimation error

Search Result 383, Processing Time 0.028 seconds

Adaptive Speed Identification for Sensorless Vector Control of Induction Motors with Torque (토크를 물리량으로 가지는 적응제어 구조의 센서리스 벡터제어)

  • 김도영;박철우;최병태;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.230-230
    • /
    • 2000
  • This paper describes a model reference adaptive system(MRAS) for speed control of vector-controlled induction motor without a speed sensor. The proposed approach is based on observing the instantaneous torque. The real torque is calculated by sensing stator current and estimated torque is calculated by stator current that is calculated by using estimated rotor speed. The speed estimation error is linearly proportional to error between real torque and estimated torque. The proposed feedback loop has linear component. Furthermore proposed method is robust to parameters variation. The effectiveness is verified by equation and simulation

  • PDF

Fast Motion Estimation Algorithm Using Early Detection of Optimal Candidates with Priority and a Threshold (우선순위와 문턱치를 가지고 최적 후보 조기 검출을 사용하는 고속 움직임 예측 알고리즘)

  • Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.55-60
    • /
    • 2020
  • In this paper, we propose a fast block matching algorithm of motion estimation using early detection of optimal candidate with high priority and a threshold. Even though so many fast algorithms for motion estimation have been published to reduce computational reduction full search algorithm, still so many works to improve performance of motion estimation are being reported. The proposed algorithm calculates block matching error for each candidate with high priority from previous partial matching error. The proposed algorithm can be applied additionally to most of conventional fast block matching algorithms for more speed up. By doing that, we can find the minimum error point early and get speed up by reducing unnecessary computations of impossible candidates. The proposed algorithm uses smaller computation than conventional fast full search algorithms with the same prediction quality as the full search algorithm. Experimental results shows that the proposed algorithm reduces 30~70% compared with the computation of the PDE and full search algorithms without any degradation of prediction quality and further reduces it with other fast lossy algorithms.

Alternative robust estimation methods for parameters of Gumbel distribution: an application to wind speed data with outliers

  • Aydin, Demet
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.383-395
    • /
    • 2018
  • An accurate determination of wind speed distribution is the basis for an evaluation of the wind energy potential required to design a wind turbine, so it is important to estimate unknown parameters of wind speed distribution. In this paper, Gumbel distribution is used in modelling wind speed data, and alternative robust estimation methods to estimate its parameters are considered. The methodologies used to obtain the estimators of the parameters are least absolute deviation, weighted least absolute deviation, median/MAD and least median of squares. The performances of the estimators are compared with traditional estimation methods (i.e., maximum likelihood and least squares) according to bias, mean square deviation and total mean square deviation criteria using a Monte-Carlo simulation study for the data with and without outliers. The simulation results show that least median of squares and median/MAD estimators are more efficient than others for data with outliers in many cases. However, median/MAD estimator is not consistent for location parameter of Gumbel distribution in all cases. In real data application, it is firstly demonstrated that Gumbel distribution fits the daily mean wind speed data well and is also better one to model the data than Weibull distribution with respect to the root mean square error and coefficient of determination criteria. Next, the wind data modified by outliers is analysed to show the performance of the proposed estimators by using numerical and graphical methods.

Nonlinear Observer Design for Satellite Angular Rate Estimation by SDRE Method (SDRE 기법을 이용한 위성 각속도 추정용 비선형 관측기 설계)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.816-822
    • /
    • 2014
  • The estimation of the angular rate of a satellite has been discussed. A nonlinear observer has been proposed based on the state-dependent Riccati equation method. A sufficient stability condition for the convergence of estimation error has been presented. This condition is related to a state-dependent algebraic Riccati equation. It has been derived by transforming nonlinear error dynamics into a Lipschitz nonlinearity. An observer gain is obtained from this condition. Numerical simulations are presented to verify the proposed method.

A Novel Speed Estimation Method of Induction Motors Using Real-Time Adaptive Extended Kalman Filter

  • Zhang, Yanqing;Yin, Zhonggang;Li, Guoyin;Liu, Jing;Tong, Xiangqian
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.287-297
    • /
    • 2018
  • To improve the performance of sensorless induction motor (IM) drives, a novel speed estimation method based on the real-time adaptive extended Kalman filter (RAEKF) is proposed in this paper. In this algorithm, the fuzzy factor is introduced to tune the measurement covariance matrix online by the degree of mismatch between the actual innovation and the theoretical. Simultaneously, the fuzzy factor can be continuously self-tuned tuned by the fuzzy logic reasoning system based on Takagi-Sugeno (T-S) model. Therefore, the proposed method improves the model adaptability to the actual systems and the environmental variations, and reduces the speed estimation error. Furthermore, a simple exponential function based on the fuzzy theory is used to reduce the computational burden, and the real-time performance of the system is improved. The correctness and the effectiveness of the proposed method are verified by the simulation and experimental results.

Absolute Vehicle Speed Estimation of Unmanned Container Transporter using Neural Network Model (무인 컨테이너 운송차량의 절대속도 추정을 위한 뉴럴 네크워크 모델 적용)

  • Ha, Hee-Kwon;Oh, Kyeung-Heub
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.227-232
    • /
    • 2004
  • Vehicle dynamics control systems are complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed supplies good results in normal conditions. But the estimation error in severe braking is discontented In this paper, we estimate the absolute vehicle speed of UCT(Unmanned Container Transporter) by using the wheel speed data from standard anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used 10 algorithms are verified experimentally to estimate the absolute vehicle speed and one of them is perfectly shown to estimate the vehicle speed within 4% error during a braking maneuver.

ANN Sensorless Control of Induction Motor with AFLC Controller (AFLC 제어기에 의한 유도전동기의 ANN 센서리스 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.224-232
    • /
    • 2006
  • The paper proposes the artificial neural network(ANN) sensorless control of induction motor drive with adaptive fuzzy logic controller(AFLC). Also, this paper proposes the speed control of induction motor using AFC and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled AFLC and him controller. And this paper is proposed the results to verify the effectiveness of the AFLC and ANN controller.

Enhancement of the Speed Response of PMSM Sensorless Control Using A New Adaptive Sliding Mode Observer (새로운 적응 슬라이딩 모드 관측기를 이용한 PMSM 센서리스 속도 응답특성 향상)

  • Kim, Hong-Ryel;Son, Ju-Beom;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.160-167
    • /
    • 2010
  • This paper proposes an adaptive sliding mode observer (SMO), which adds the estimation function of the stator resistance to a new sliding mode observer for the robust sensorless control of permanent magnet synchronous motor (PMSM) with variable parameters. To reduce the chattering problem commonly found in the conventional sliding mode observer where the low-pass filter and additional position compensation of the rotor are used, the sigmoid function is used for the control of a switching function in this research. With the estimation of the stator resistance, the proposed observer can improve the control performance by reducing the estimation error of the motor's speed. Note that the stator resistance is varying with the ambient temperature and becomes an error source for the sensorless control of PMSM. The new sliding mode observer has better efficiency than the conventional adaptive sliding mode observer by reducing the time consuming integral calculations. The stability of the proposed adaptive sliding mode observer is verified by the Lyapunov function in determining the observer gains, and the effectiveness of the observer is demonstrated by simulations and experiments.

A Study on the High Speed Train Localization Using Doppler Frequency in the Wireless Communication (무선통신 도플러 주파수를 이용한고속열차 위치 추정에 관한 연구)

  • Kim, Jungtai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.826-833
    • /
    • 2017
  • It is important to localize trains precisely for the purpose of controlling them and there have been many studies designed to accomplish this without the need for wayside systems. Since trains run on fixed railway lines, it is possible to search in one direction to localize them. Moreover, it is also possible to know the shape of the line in advance. In the case of high speed trains, their speed and, therefore, their Doppler frequency is relatively high and the railway line is either linear or circular with a large radius. In this study, we utilize these features and propose a train localization method using the Doppler frequency of the signals transmitted from two points (base stations). We derive localization equations for a linear line, circular line, and mixed line (linear plus circular) respectively. Though Doppler radars are usually used to measure speed, the proposed method obtains the location information and the speed successively using the ratio of the doppler frequencies of two signals without knowing the location information or the speed. Computer simulations are performed to show the variation of the estimation error according to the train's location and the measurement error level. The conditions required to obtain the target error level and the increase in the estimation error according to the measurement error are compared between the proposed and conventional methods. The results show the superior performance and robustness of the proposed method.

Sensorless Vector Control of Induction Motor Using Closed loop Flux Estimator (폐루프 자속추정기를 이용한 유도전동기의 센서리스 벡터제어)

  • 서영수;임영배;음두성;이상훈
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.217-220
    • /
    • 1998
  • In this paper, for high performance as drive, in the speed sensorless vector control of induction motor, introduced flux estimator of voltage model and error compensation algorithm using closed loop integration method, and then we proposed a improved flux estimation method of high accuracy. And the rotor speed is estimating using the stator current and the estimated flux, it is used speed information. The proposed scheme is verified through digital simulations and experiments for 3.7[kW] induction motor and shows good dynamic performance.

  • PDF