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Abstract – To improve the performance of sensorless induction motor (IM) drives, a novel speed 
estimation method based on the real-time adaptive extended Kalman filter (RAEKF) is proposed in 
this paper. In this algorithm, the fuzzy factor is introduced to tune the measurement covariance matrix 
online by the degree of mismatch between the actual innovation and the theoretical. Simultaneously, 
the fuzzy factor can be continuously self-tuned tuned by the fuzzy logic reasoning system based on 
Takagi–Sugeno (T-S) model. Therefore, the proposed method improves the model adaptability to the 
actual systems and the environmental variations, and reduces the speed estimation error. Furthermore, 
a simple exponential function based on the fuzzy theory is used to reduce the computational burden, 
and the real-time performance of the system is improved. The correctness and the effectiveness of the 
proposed method are verified by the simulation and experimental results. 
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1. Introduction 
 
In the AC drive systems of high performance, the 

closed-loop speed control is indispensable. Generally, the 
speed is measured by speed sensors. However, the cost is 
increased, and the robustness and the reliability of system 
are reduced owing to installation of speed sensors. These 
problems make scholars have done a lot of researches on 
the speed sensorless control. Many sensorless methods 
have been proposed, such as artificial neural networks 
(ANN) [1], model reference adaptive systems (MRAS) [2, 
3], sliding-mode observer (SMO) [4, 5], adaptive full-order 
observer (AFO) [6-8], high-frequency signal injection [9, 
10], and extended Kalman filter (EKF) [11-26].  

Sun et al. [1] propose a novel method which uses ANNs 
for the parameter estimation for IM to implement sensorless 
control, and the performance of proposed method is better 
than classical one. Accetta et al. [2] have developed a 
speed observer based on a closed-loop MRAS for linear 
induction motor drives, and the low speed performance is 
improved based on this method. Orlowska-Kowalska and 
Dybkowski. [3] propose a novel formulation of reactive-
power-based MRAS, which can operate stably in the four 
quadrants. However, in this research, with respect to 
sensorless IM drives, the rotor flux and the load torque 
should be known to achieve the sensorless controller. In 
addition, the effectiveness is lost, and the accurate results 

are not obtained due to the unobservability at low speed in 
these observers. References [4] and [5] use SMO for speed 
estimation and stator resistance identification, and thus the 
problems of stator resistance variation are overcome, 
particularly at low speed operation. However, since the 
method relies on the mathematical model of IM in the 
design process, and the observation ability is commonly 
lost at zero frequency. In addition, the problem of SMO 
which is chatter should be solved. In [6, 7] and [8], some 
novel designing rules for the self-adaption of PI gains to 
obtain satisfied performances are proposed. The robustness 
of AFO against motor parameter variations is also 
researched, but the speed fluctuation becomes larger with 
the speed decreased. In [9, 10], the high-frequency signal 
injection is used for rotor speed estimation, and good 
performance is obtained. The speed-sensorless control 
approaches using signal injection can remain stable for a 
long time at zero stator frequency. However, they are 
highly complicated and need customized designs for 
specific motor drive, and the estimated speed is delayed to 
the totor speed due to the filters. 

Compared with the other methods, a stochastic method 
is used for state estimation in EKF, and differential 
operation of estimated state is avoided. The estimated 
value can be adjusted by gain matrix and innovation error, 
which makes state estimation error tend to be minimum. 
EKF has become the focus of the speed sensorless control 
for motors. In [11], the convergence of EKF in sensorless 
drive system of induction motor is analyzed, and the related 
properties of discrete model are discussed. Moreover, the 
observable condition of EKF is researched deeply, and the 
properties and the estimator performance are verified by 
experimental results. Reference [12] uses EKF for speed 
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and flux linkage estimation in direct torque control (DTC) 
system, and the experimental results indicated that the 
system using EKF has satisfactory performance and practical 
value. In [13], EKF is used for speed, flux linkage, and 
stator current estimation in the induction motor predictive 
control, the estimated current is fed back into the prediction 
model to reduce the current harmonics. Based on this 
method, the good performance can be achieved in the wide 
speed range, including the field weakening region. In [14] 
and [15], a speed and position estimator based on EKF is 
used in the vector control system of PMSM. The proposed 
method enhances the control bandwidth and avoids the 
identification problems due to low order state equations of 
IPMSM, and the rotor position estimation error using the 
identified flux is limited to a small level. To improve the 
practicability of EKF, references [16] and [17] propose a 
reduced-order EKF algorithm to only estimate the flux and 
speed estimation, and the speed and flux linkage can be 
estimated easily. In order to reduce the influence of motor 
parameter variations, Barut et al. [18] propose a bi input-
EKF (BI-EKF)-based estimator, the proposed method 
estimation is verified in real-time with the challenging 
variations of motor parameters in a wide speed range. 
Compared with EKF, the performance of BI-EKF has made 
significant improvement.  

However, EKF requires good prior information about 
the measurement noise condition to achieve the superior 
estimated performance. The researches show that the 
system may lose stability in different noise conditions even 
EKF is accurate. The estimation performance of EKF will 
become worse due to large external disturbance and time 
varied measurement noise. Therefore, the noise covariance 
matrices selected by the prior information cause the bad 
performance of estimation, and the filter is also unsteady 
under different noise condition. The different measurement 
noise disturbance will degrade the performance of EKF 
with the fixed measurement covariance matrix. An adaptive 
speed and flux estimation method based on the multiple-
model extended Kalman filter (MM-EKF) for induction 
motors is proposed in [19], and the experimental results 
demonstrate that MM-EKF can effectively improve the 
model adaptability to the actual systems and the 
environmental variations. Moreover, the maximum error of 
the speed estimation with disturbance and motor parameter 
mismatches is obviously reduced, and both the steady 
and transient performance is improved by using the 
proposed adaptive speed estimation method. However, 
the computation of algorithm is large, and the high 
performance for CPU is required. In [20], a speed 
estimation method based on strong tracking EKF with 
least-square for induction motors is proposed, and the 
good robustness and anti-error performance are obtained. 
However, the symmetry of error covariance matrix cannot 
be ensured based this method, which resulting in filtering 
divergence. The main contribution of this paper is that a 
novel speed estimation method based on the real-time 

adaptive extended Kalman filter (RAEKF) is proposed in 
this paper to improve the model adaptability to the actual 
systems and the environmental variations, and reduce the 
speed estimation error. In this algorithm, the fuzzy factor 
is introduced to tune the measurement covariance matrix 
online, and the estimation error is adjusted adaptively 
and the mutational state is tracked fast. Simultaneously, 
the fuzzy factor can be continuously self-tuned tuned by 
the fuzzy logic reasoning system based on Takagi-Sugeno 
(T-S) model. Furthermore, a simple exponential function 
based on the fuzzy theory is used to reduce the 
computational burden, and the real-time performance of the 
system is improved. The correctness and the effectiveness 
of the proposed method are verified by the simulation and 
experimental results. 

 
 

2. EKF Observer 
 
The state equations for IM is expressed as follows, 
 

1 1( )s s m m
s r r r s

s r s r r s r s

di R L Li u
dt L T L L T L L L
a

a a b a
s y w y

s s s s s
-

= - + + + +   

  (1) 

1 1( )s s m m
s r r r s

s r s r s r r s

di R L Li u
dt L T L L L L T L
b

b a b b
s w y y

s s s s s
-

= - + - + +

   (2) 

 
1r m

s r r r
r r

d L
i

dt T T
a

a a b
y

y w y= - -   (3) 

 
1r m

s r r r
r r

d L
i

dt T T
b

b b a

y
y w y= - +   (4) 

 
2

( )mr
s r s r L

r

p Ld pi i T
dt JL Jb a a b
w

y y= - -   (5) 

 T
s si ia bé ùë ûY =   (6) 

 
In the speed sensorless control, the models which are 

described by (1)-(6) are non-linear and multivariable, and 
is affected by parametric uncertainties. The change of 
speed can be ignored when the sampling period is very 
small or the load moment of inertia is very large. 
Therefore, a fifth-order model is obtained based on the 
assumption that 0rw =&  without torque observation.  

EKF can be described by 
 

 
ˆ ˆ ˆ( )dx Ax Bu K y y

dt
= + + -   (7) 

 ˆ ˆy Hx=   (8) 
 
The noise exists in the actual system, which can be 

incorporated in vector wk and vector vk.  
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,cov( , ) { } 0,
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k i k i
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  (9) 
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 cov( , ) { } 0T
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In the recursive calculation of EKF, wk and vk are not 

used directly, but Q and R are used. The system noise 
covariance Q includes model uncertain, motor parameter 
inaccuracy, system disturbances, and rounding and 
truncation error caused by limited word length of DSP. 
The noise covariance R includes A/D quantization and 
measurement noise introduced by the current sensors. 

From (7) and (8), EKF is expressed by the following 
nonlinear model under taking noise into consideration in 
the α-β reference frame, 
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Prediction Process: 
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Kalman Filter Gain:  

 1( )T T
k k k k k k kK P H H P H R -= +% %   (16) 

 
FilterProcess: 

 ˆ ( )k k k k k kx x K y H x= + -% %   (17) 
 ˆ ( )k k k kP I K H P= - %   (18) 

 
 

3. Real-Time Adaptive EKF Observer 
 
In the traditional EKF, the noise covariance matrix is 

unitary so that it cannot adjust different situations and work 
modes. Moreover, extended Kalman filter is poorly robust 
against model uncertainties. When the motor running state 
does not conform to the model, there is a greater speed 
estimation error. 

A novel speed estimation method based on the real-time 
adaptive extended Kalman filter (RAEKF) is proposed in 
this paper to improve the model adaptability to the actual 
systems and the environmental variations, and reduces the 
speed estimation error. In this algorithm, the fuzzy factor 
is introduced to tune the measurement covariance matrix 
online, and the estimation error is adjusted adaptively and 
the mutational state is tracked fast. Simultaneously, the 
fuzzy factor can be continuously self-tuned tuned by the 
fuzzy logic reasoning system based on Takagi–Sugeno (T-S) 
model. Furthermore, a simple exponential function based 
on the fuzzy theory is used to reduce the computational 
burden, and the real-time performance of the system is 
improved. 

The innovation of filter is a parameter which can be 
observed directly, and it can be used as a reference for 
the filter performance by observing the covariance of the 
innovation sequence. Generally, the innovation of filter 
should be a white noise sequence with zero mean. 
However, the statistical characteristics of the innovation 
sequence will become complex, when the prior knowledge 
of the measurement noise is not known exactly. Therefore, 
through the innovation covariance estimation, the measure-
ment noise covariance matrix R can be adjusted adaptively. 

kr  is the innovation at k moment, it can be calculated as 
follows 
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 k k k kr y H x= - %   (19) 

 
The actual innovation covariance can be computed 

through averaging within a sliding estimation window, and 
it can be obtained as follows 
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T
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= å
0i

  (20) 

 
where i0 is the first sample inside the window, and i0=k-
M+1. The window size M is chosen empirically to make 
statistical smoothing. If the window size M is too small, the 
actual innovation covariance will be too noisy. On the other 
hand, if a large window size is utilized, the actual 
innovation covariance will be smoother. 

Then, the theoretical innovation covariance of EKF with 
a fixed R should be 

 
 1( )T T

r k k k - k k kp = H G P G +Q H +R   (21) 
 
When EKF is performed optimally, the actual innovation 

covariance should be approximately equal to the theoretical 
innovation covariance, namely , 

 
 r rc p»   (22) 

 
Obviously, the selection of measurement noise matrix R 

is important for the convergence of the speed estimation 
based on EKF. The influence of large disturbance can be 
reduced or eliminated by modulating measurement noise 
matrix on the basis of the innovation.  

The structure of AEKF algorithm is presented as 
follows: 

Prediction: 
 1ˆ( )k kx f x -=%   (23) 
 1

ˆ T
k k k k kP G P G Q-= +%   (24) 

 
Update: 

 1( )T T
k k k k k k kK P H H P H R -= +% %   (25) 

 ˆ ( )k k k k k kx x K y H x= + -% %   (29) 
 k̂ k k kP P K H P= -% %   (27) 

 1 1
b

k+ k+ kR = s R   (28) 
 

where sk is an adaptive adjustment factor, which is used to 
adjust the measurement noise matrix Rk, and b(b>0) is an 
amplification coefficient of the adaptive level. 

The main difference between real-time adaptive EKF 
and EKF is the calculation of factor 1

b
k+s . If 1 1b

k+s = , 
AEKF is the same as the traditional EKF. 

If it is found that the actual value of the innovation 
covariance has discrepancy with its theoretical value, the 
diagonal elements of Rk is adjusted based on the size of this 
discrepancy. The objective of these adjustments is to 

correct this mismatch as far as possible. The ratio of trace 
between theoretic innovation and actual innovation can be 
defined as the degree of mismatch (DOMk)  

 

 
( )
( )

r
k

r

Tr cDOM =
Tr p

  (29) 

 
where Tr(·) is the trace of matrix. According to (22), when 
EKF is performed optimally, DOMk should be around one. 
The block diagram of real-time adaptive EKF is shown in 
Fig. 1. 

In AEKF, the degree of mismatch (DOMk) parameter is 
monitored based on the innovation, and then the 
exponential function is designed to adjust the adjustment 
factor sk dynamically for EKF under uncertain noise 
circumstances. 

The amplification coefficient b is essential to the adaptive 
adjustment factor sk for predicting the measurement noise 
matrix Rk in practical applications. 
a)  If b>1, it indicates that b magnifies effect of the 

adjustment of sk. Therefore, Rk can be modified within 
less steps, and adjusted to optimum rapidly. However, if 
the selected b is too large, it may causes that the value 
of Rk fluctuates with a small amplitude. 

b) If b<1, it indicates b minifies effect of the adjustment of 
sk. Therefore, Rk can be adjusted to optimum precisely 
and stably. However, if the selected b is too small, it 
may need more transition time which is used to adjust 
Rk . 
 

3.1 Seeking mechanism of adjustment factor based 
on fuzzy logic  

 
The fuzzy logic is developed by Zadeh for representing 

uncertain and imprecise knowledge. It provides an 
approximate but effective method to describe the behavior 
of systems which are too complex, ill-defined, or not 
easily analyzed mathematically. In Fig. 2, a typical fuzzy 
system consists of three components: fuzzification, fuzzy 
reasoning (fuzzy inference), and fuzzy defuzzification.  

As mentioned above, when the actual innovation 
covariance has extreme discrepancy with the theoretical 
innovation covariance, it shows that there are presumable 
variations in measurement noises. Therefore, the filter 
cannot reach the optimum performance based on the fixed 
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Fig. 1. Speed estimation structure based on AEKF 
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measurement noise matrix R. In order to get optimized 
extended Kalman filter, the system selects an adaptive 
adjustment factor sk from an appropriate fuzzy logic 
controller to make the actual value of the innovation 
covariance close to the theoretical value. 

There are one input and one output for the fuzzy logic 
controller (FLC), and 5 rules are used, namely, 

IF DOMk ∈ less1, then sk ∈ less1. 
IF DOMk ∈ equal1, then sk ∈ equal1. 
IF DOMk ∈ more1, then sk ∈ more1. 
IF DOMk ∈ mless1, then sk ∈ mless1. 
IF DOMk ∈ lmore1, then sk ∈ lmore1. 

These membership functions are provided in Fig. 3. 
The fuzzy modeling is a method to describe the 

characteristics of a system based on fuzzy inference rules. 
In this paper, a T-S fuzzy system is used to detect the 
divergence of EKF and adapt filter. Takagi and Sugeno 
propose a fuzzy modeling approach for model nonlinear 

systems, and the T-S fuzzy system represents the 
conclusion by functions. The typical T-S system is shown 
in Fig. 4. 

A typical rule in the T-S model has the form: IF Input x1 
is F1

1 and Input x2 is F2
1…and Input xn is Fn

1 THEN Output  

 yk=fk(x1, x2…xn)=Ck0+ Ck1x1+…+ Cknxn. 

where Cki (i=0~n) are constants in the kth rule. For the first-
order model, it has the rule in the form: IF Input x1 is F1

1 
and Input x2 is F2

1 THEN Output  

 yk=C10+ C11x1+ C12x2. 

where F1
1 and F2

1 are fuzzy sets and C10, C11 and C12 are 
constants.  

For a zero-order model, the output level is a constant: IF 
Input x1 is F1

1 and Input x2 is F2
1 THEN Output yk=C10. 

The output is the weighted average of the yk. 
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where 1

1M
ij
l

=
=å , and μ represents the membership. 

Fig. 5 shows the output of defuzzification. When the 
input value of DOMk is around one, it reveals that the 

 
Fig. 2. A fuzzy system 
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Fig. 3. Membership functions of input and output variable 
of FIS: (a) Membership functions of DOMk; (b) 
Membership functions of sk 

R(1): IF Input x1 is F1
1 AND...AND Input xn is Fn

1

THEN Output y1=C10+ C21x1+…+ C1nxn.
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Fig. 4. T-S fuzzy system 
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actual value of the innovation covariance is close to its 
theoretical value, and the output value of fuzzy factor sk is 
around one. 

 
3.2 Real-time adaptive extended kalman filter 

 
Due to the fuzzy reasoning (fuzzy inference), the fuzzy 

defuzzification and the calculation of fuzzification, it is 
the essential to make a tradeoff between the accuracy and 
the computational burden for AEKF. Therefore, a real-
time adaptive extended Kalman filter (RAEKF) based on 
exponential function is proposed in this paper to reduce 
the computational burden and improve the real-time 
performance simultaneously. 

According to Fig. 5, it can be seen that the part 
waveform of the FIS output and the waveform of constant 
voltage power supply charging for the capacitor are 
similar. The formula of charging is designed as  

 
 ( ) (1 exp( / ))py t K t t= - -   (32) 

 
where Kp is the final value of response, t is time, and τ is 
the time constant. According to Fig. 5, the output equation 
of fuzzy controller can be expressed approximately as 
when 0.5 1kDOM£ < , then 
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where sig(·) is the sign function. The curve of the above 
simple exponential function is shown in Fig. 6. 

Comparing Fig. 5 with Fig. 6, the two graphics are 
approximate. Therefore, an exponential function instead of 
fuzzy controller is used to obtain the real-time adaptive 
adjustment factor sk.  

In RAEKF, the exponential function is prescribed 
generally as 
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Fig. 7. System block frame of sensorless vector control 

based on RAEKF 
 
where Ap and t can change the performance of the filter. A 
is one-fifth of sk maximum amplitude. τ is set to change 
curvature of the curve. x and y are the horizontal and 
vertical curve offset value, respectively. 

The structure of sensorless vector control system for 
induction motors is shown in Fig. 7. The system adopts 
double loop control structure, and they are speed and 
current controller, respectively. The voltage and the phase 
current of the induction motor are transformed to α-β 
reference frame, which are the inputs of RAEKF. The rotor 
speed is estimated, which is the input of speed controller. 
The control voltage (usα*, usβ*) are transformed to usd* and 
usq*, which are the outputs of current controller. Finally, a 
induction motor is regulated by a PWM inverter which are 
controlled by the outputs of SVPWM. 

 
 

4. Experimental Results 
 
The proposed method is implemented to validate the 

performance of the estimator on experimental platform 
based on TMS320F28335, and the clock frequency of 
TMS320F28335 is 150 MHz. Table 1 shows the parameters 
of the induction motor in the experiment, and Fig. 8 shows 
the experimental system. The induction motor is driven by 
the two level voltage inverter. The switching frequency of 
the inverter is 8 kHz, the execution time of traditional 
EKF is 50 μs, the execution time of AEKF is 75 μs, and 
the execution time of RAEKF is 60 μs. The initialization 
parameters for EKF and RAEKF are as follows: 

 
[0.1,0.1],R diag=   

2 2 3 3[2 10 ,2 10 ,2 10 ,2 10 ,1]Q diag - - - -= ´ ´ ´ ´ . 
 

Table 1. Motor parameters 

PN 
UN 
IN 
Fn 
TL 
J 
nN 

1.1 kW 
380 V 
2.7 A 
50 Hz 
7.5 N·m 
0.02 kg·m2 
1410 r/min 

Rs 
Rr 
Lm 
Ls 
Lr 
σLs 
P 

5.27 W  
5.07 W  
0.421 H 
0.423 H 
0.479 H 
0.053 H 

2 
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Fig. 6 The curve of adjustment factor sk 
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Fig. 8. Experimental platform 

 

 
Fig. 9. Experimental results based on RAEKF in wide 

speed range 
 

4.1 Experimental verification for speed estimation 
during full speed and low speed 

 
Fig. 9 shows the response based on RAEKF when the 

given speed changes six steps, and the whole range of 
operating speed is contained. At the beginning, the motor 
operates at 2pi rad/s. Then, the motor accelerates to 20pi 
rad/s, 60pi rad/s and 100pi rad/s, respectively. Last, the 
motor decelerates to 80pi rad/s and 40pi rad/s, respectively. 
As presented in Fig. 9, the estimated speed can be is 
coincided with the actual speed, and it indicates that the 
tracking performance of RAEKF is good.  

Fig. 10 shows the experimental result when the motor 
operates forward to reversal at low speed. At the beginning, 
the motor is operating at +100pi rad/s. Then, the motor 
decelerates to zero and accelerates to -100pi rad/s. From 
the experimental result, it shows that the current has no 
oscillation and transition during the motor speed reversal. 
In addition, the estimated speed based on RAEKF also 
tracks on the actual speed well, and the motor can switch 
smoothly at zero-crossing position. 

In order to make further performance verification of the 
proposed method, a loading experiment is implemented 
at 1pi rad/s. Fig. 11 presents the experimental results 
based on RAEKF at 1pi rad/s when a step load with 150% 
rated torque is added. At the beginning, the motor is 
operating at +1pi rad/s with no load. Then, a step load is 
added to the motor. It shows that the speed sensorless 
vector control system based on RAEKF has good loading 
ability. However, the fluctuation of motor speed and speed 

estimation error become larger. But the motor can operate 
stably and well at low speed with load, and the current 
waveform is not distorted and remains sine. 

Fig. 12 shows that the speed estimation performance 
based on RAEKF when speed-sensor fails at 100pi rad/s 
with 100% rated torque. The speed based on speed-sensor 
is used feedback speed before 4 s, and the speed based on 
RAEKF is used feedback speed after 3 s to simulate 
encoder failure. From the experimental results, the current 
waveform has slight oscillation, but it restores stability 
quickly and the motor can operate stably. Therefore, 
RAEKF is particularly suitable for the products of the 
speed-sensorless compact drives composing of a motor and 

 
Fig. 10. Speed response and stator current based on 

RAEKF when the given speed ranges from +100pi 
rad/s to -100pi rad/s 

 

 
Fig. 11. Experimental results based on RAEKF at 1pi rad/s 

with step load from 0 to 150% rated torque 
 

 
(a)                     (b) 

Fig. 12. Speed estimation performance based on RAEKF 
when speed-sensor fails at 100pi rad/s with 100% 
rated torque 
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an inverter, the applications such as electrical or hybrid 
vehicles where both a resolver as speed sensor and a speed 
estimation algorithm which are used and required for 
safety purposes in case the speed-sensor fails. 

Figs. 9-12 demonstrate the correctness of the speed 
estimation system based on RAEKF. 

 
4.2 Robustness to motor parameter variations 

 
In order to validate the robustness of RAEKF with motor 

parameter variations, the experiments are implemented 
with parameter mismatch in this paper, and the given speed 
is 2pi rad/s with no load. Fig. 13 shows experimental 
results using EKF and RAEKF with the stator resistance 
deviation |ΔRs |=30%. As presented in Fig. 13, the 
fluctuation of estimated speed based on EKF is larger 
than RAEKF when Rs mismatches. In addition, the speed 
estimation error is 2.2 rad/s using EKF. However, the speed 
estimation error is 1.2 rad/s based on RAEKF, which is 
smaller than EKF with mismatched Rs. 

Fig. 14 presents the experimental results of EKF and 
RAEKF at 2pi rad/s with the rotor resistance deviation 
|ΔRr |=30%. It can be seen that the estimated speed based 
on EKF has a larger fluctuation when Rr mismatches, and 
the speed estimation error is 2.1 rad/s. However, the speed 
estimation error using RAEKF is only 1.1 rad/s, and the 
speed estimation fluctuation and error of RAEKF are 
smaller, compared with EKF. 

 

 
(a)                     (b) 

Fig. 13. Experimental comparison of the estimated speed 
and the speed estimation error at 2pi rad/s with the 
stator resistance deviation |ΔRs|=30%. (a) EKF. (b) 
RAEKF.  

 

 
(a)                     (b) 

Fig. 14. Experimental comparison of the estimated speed 
and the speed estimation error at 2pi rad/s with the 
rotor resistance deviation |ΔRr |=30%. (a) EKF. 
(b) RAEKF.  

Fig. 15 presents the experimental results of EKF and 
RAEKF at 2pi rad/s with the mutual inductance deviation 
|ΔLm |=30%. It can be seen that the estimated speed based 
on EKF has a larger fluctuation when Lm mismatches, and 
the speed estimation error is 2.0 rad/s. However, the speed 
estimation error based on RAEKF is only 1.0 rad/s, and the 
speed estimation fluctuation and error of RAEKF are 
smaller, compared with EKF. 

Fig. 13, Fig. 14 and Fig. 15 confirm that EKF is more 
sensitive to the motor parameter variations, and the 
robustness of RAEKF to motor parameter variations is 
better than EKF. The reason is that the noise matrix is fixed 
in EKF, and the modeling error cannot be tracked real-time 
when motor parameter variations. However, the adaptive 
adjustment factors are introduced in RAEKF, and the 
influence of modeling error can be weakened real-time by 
tuning adjustment factor in real-time.  

 
4.3 With gross external disturbance 

 
Fig. 16 presents the experimental results based on EKF 

and RAEKF when a external disturbance occurs at 100pi 
rad/s. In the experimental, a pulse that valued 2A is added 
to current detection channel for simulating external 
disturbance occurs. From the experimental results, both 
EKF and RAEKF are affected by external disturbance, but 
the estimated speed fluctuation and speed estimation error 
based on EKF is larger than RAEKF. The estimated speed 

 
(a)                     (b) 

Fig. 15. Experimental comparison of the estimated speed 
and the speed estimation error at 2pi rad/s with the 
mutual inductance deviation |ΔLm |=30%. (a) 
EKF. (b) RAEKF 

 

 
(a)                     (b) 

Fig. 16. Experimental comparison of the estimated speed 
and the speed estimation error at 100pi rad/s with 
gross external disturbance. (a) EKF. (b) RAEKF 
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fluctuation based on EKF is 30 rad/s, and the speed 
estimation error is 11 rad/s when a disturbance occurs. 
However, The estimated speed fluctuation based on 
RAEKF reduces to 6 rad/s, and the speed estimation error 
reduces to 5 rad/s. Therefore, the influence of external 
disturbance to system can is weakened effectively, and 
the anti-error ability of system is improved obviously by 
RAEKF. 

 
4.4 With gross estimation error 

 
Fig. 17 presents the experimental results based on EKF 

and RAEKF at 100pi rad/s when a gross estimation error 
occurs. In the experimental, a pulse which valued 1 is 
added to ray%  for simulating internal estimation error 
occurs. From the experimental results, both EKF and 
RAEKF are affected by internal estimation error, but the 
estimated speed fluctuation and speed estimation error 
based on EKF is larger than RAEKF. The estimated speed 
fluctuation based on EKF is 28 rad/s, and the speed 
estimation error is 12 rad/s when a gross estimation error 
occurs. However, The estimated speed fluctuation based on 
RAEKF reduces to 8 rad/s, and the speed estimation error 
reduces to 4 rad/s. Therefore, RAEKF has better anti-

estimation-error performance, compared with EKF. 
 

4.5 Dynamic performance verification with step load  
 
Fig. 18 compares the experimental results with EKF and 

RAEKF when a step load is added with 100% rated torque. 
At the beginning, the motor operates at 100pi rad/s with no 
load, then a step load is added to the motor, and runs for 
some time with load. Last, the load is removed from the 
motor. It can be seen that both EKF and RAEKF can 
operate stably with load. However, the maximum error of 
the speed estimation based on RAEKF is smaller than EKF, 
and it reduces to 9 rad/s from 18 rad/s during the loading 
and deloading. In addition, the speed estimation error using 
RAEKF is also smaller than EKF operates with load. 
Therefore, RAEKF is more effective to achieve the speed-
sensorless control, and the dynamic tracking and steady 
performance are better with step load, compared with EKF. 

 
 

5. Conclusion 
 
In this paper, an adaptive speed estimation method 

based on RAEKF for induction motors has been proposed. 
The correctness and the effectiveness of the proposed 
method have been verified based on a sensorless IM drive. 
The experimental results demonstrate that RAEKF can 
effectively improve the model adaptability to the actual 
systems and the environmental variations. The maximum 
error of the speed estimation with disturbance and motor 
parameter mismatches is obviously reduced, and both the 
steady and transient performance is improved by using the 
proposed adaptive speed estimation method. Compared 
with the method of reference [19], the execution time of 
IMM-EKF is 155 μs, however, the execution time of the 
proposed RAEKF is only 60 μs. Table 2 shows the 
comparison of the speed estimation error with some 
specific conditions based on the two methods. From Table 
2, it can be seen that the performance of the proposed 
RAEKF is better than IMM-EKF. 

 
 

Nomenclature 
 

α, β Stationary reference frame axes. 
d, q Rotary reference frame axes. 
a, b, c Three-phase reference frame axes. 
isα, isβ α-Axis and β-Axis stator currents, A. 
isd, isq d-Axis and q-Axis stator currents, A. 
ia, ib, ic a-Axis, b-Axis and c-Axis stator currents, A. 
usα, usβ α-Axis and β-Axis stator voltages, V. 
usd, usq d-Axis and q-Axis stator voltages, V. 

 
(a)                     (b) 

Fig. 17. Experimental comparison of the estimated speed 
and the speed estimation error at 100pi rad/s with 
gross estimation error. (a) EKF. (b) RAEKF 

 

 
(a)                     (b) 

Fig. 18. Experimental results based on EKF and RAEKF at
100pi rad/s when a step load is added with 100% 
rated torque. (a) EKF. (b) RAEKF 

Table 2. Comparison of the speed estimation error 

Algorithm With gross external disturbance With gross estimation error With | ΔRs | = 30% With | ΔRr | = 30% With | ΔRm | = 30% 
IMM-EKF 7rad/s 8 rad/s 1.5 rad/s 1.6 rad/s 1.3 rad/s 

RAEKF 5 rad/s 4 rad/s 1.2 rad/s 1.1 rad/s 1.0 rad/s 
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ψrα, ψrβ α-Axis and β-Axis rotor flux linkages, Wb. 
Vdc DC link voltage, V. 

*W  Reference quantity. 
J Moment of inertia. 
θ Rotor position. 
ωsl Slip frequency, rad/s. 
ωr Angular rotor speed, rad/s. 
Lm Mutual inductance, H. 
Lsσ Stator leakage inductance, H. 
Lrσ Rotor leakage inductance, H. 
Ls, Lr Stator and rotor inductances, H. 
σ (=1-(Lm

2/LsLr)) Total leakage coefficient. 
σr Rotor leakage coefficient. 
σs Stator leakage coefficient. 
Rs, Rr Stator and rotor resistances, Ω. 
Tr (=Lr /Rr) Rotor time constant. 
T Sampling period, μs. 
vk System noise. 
wk Measurement noise. 
TL Rated torque, N·m. 
P Pole pair. 
PN Rated power, kW. 
UN Rated voltage, V. 
IN Rated current, A. 
fN Rated frequency, Hz 
ˆrw  Estimated speed, rad/s. 

ˆ rωD  (= ˆ-r rw w ) Speed estimation error, rad/s. 
·%  Prediction value. 
·̂  Update value. 
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