• Title/Summary/Keyword: speed error rate

Search Result 541, Processing Time 0.026 seconds

40Gb/s Foward Error Correction Architecture for Optical Communication System (광통신 시스템을 위한 40Gb/s Forward Error Correction 구조 설계)

  • Lee, Seung-Beom;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • This paper introduces a high-speed Reed-Solomon(RS) decoder, which reduces the hardware complexity, and presents an RS decoder based FEC architecture which is used for 40Gb/s optical communication systems. We introduce new pipelined degree computationless modified Euclidean(pDCME) algorithm architecture, which has high throughput and low hardware complexity. The proposed 16 channel RS FEC architecture has two 8 channel RS FEC architectures, which has 8 syndrome computation block and shared single KES block. It can reduce the hardware complexity about 30% compared to the conventional 16 channel 3-parallel FEC architecture, which is 4 syndrome computation block and shared single KES block. The proposed RS FEC architecture has been designed and implemented with the $0.18-{\mu}m$ CMOS technology in a supply voltage of 1.8 V. The result show that total number of gate is 250K and it has a data processing rate of 5.1Gb/s at a clock frequency of 400MHz. The proposed area-efficient architecture can be readily applied to the next generation FEC devices for high-speed optical communications as well as wireless communications.

Analysis of Korean Language Parsing System and Speed Improvement of Machine Learning using Feature Module (한국어 의존 관계 분석과 자질 집합 분할을 이용한 기계학습의 성능 개선)

  • Kim, Seong-Jin;Ock, Cheol-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.66-74
    • /
    • 2014
  • Recently a variety of study of Korean parsing system is carried out by many software engineers and linguists. The parsing system mainly uses the method of machine learning or symbol processing paradigm. But the parsing system using machine learning has long training time because the data of Korean sentence is very big. And the system shows the limited recognition rate because the data has self error. In this thesis we design system using feature module which can reduce training time and analyze the recognized rate each the number of training sentences and repetition times. The designed system uses the separated modules and sorted table for binary search. We use the refined 36,090 sentences which is extracted by Sejong Corpus. The training time is decreased about three hours and the comparison of recognized rate is the highest as 84.54% when 10,000 sentences is trained 50 times. When all training sentence(32,481) is trained 10 times, the recognition rate is 82.99%. As a result it is more efficient that the system is used the refined data and is repeated the training until it became the steady state.

Design of a 3.3V 8-bit 200MSPS CMOS Folding/Interpolation ADC (3.3V 8-bit 200MSPS CMOS Folding/Interpolation ADC의 설계)

  • Na, Yu-Sam;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.198-204
    • /
    • 2001
  • In this paper, a 3V 8-bit 200MSPS CMOS folding / interpolation A/D Converter is proposed. It employs an efficient architecture whose FR(Folding Rate) is 8, NFB(Number of Folding Block) is 4, and IR (Interpolating Rate) is 8. For the purpose of improved SNDR by to be low input frequency, distributed track and hold circuits are included. In order to obtain a high speed and low power operation, further, a novel dynamic latch and digital encoder based on a novel delay error correction are proposed. The chip has been fabricated with a 0.35${\mu}{\textrm}{m}$ 2-poly 3-metal n-well CMOS technology. The effective chip area is 1070${\mu}{\textrm}{m}$$\times$650${\mu}{\textrm}{m}$ and it dissipates about 230mW at 3.3V power supply. The INL is within $\pm$1LSB and DNL is within $\pm$1LSB, respectively. The SNDR is about 43㏈, when the input frequency is 10MHz at 200MHz clock frequency.

  • PDF

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.

A Real-Time Data Transfer Mechanism Considering Link Error Rates in Wireless Sensor Networks (무선 센서 네트워크에서 링크 에러율을 고려한 실시간 데이터 전달 기법)

  • Choi, Jae-Won;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.146-154
    • /
    • 2007
  • In this paper, we have presented a real-time transfer mechanism for the delay-sensitive data in WSNs (Wireless Sensor Networks). The existing methods for real-time data transfer select a path whose latency is shortest or the number of hops is least. Although the approaches of these methods are acceptable, they do not always work as efficiently as they can because they had no consideration for the link error rates. In the case of transmission failures on links, they can not guarantee the end-to-end real-time transfer due to retransmissions. Therefore, we have proposed an algorithm to select a real-time transfer path in consideration of the link error rates. Our mechanism estimates the 1-hop delay based on the link error rate between two neighboring nodes, which in turn enables the calculation of the expected end-to-end delay. A source node comes to choose a path with the shortest end-to-end delay as a real-time route, and sends data along the path chosen. We performed various experiments changing the link error rates and discovered that this proposed mechanism improves the speed of event-to-sink data transfer and reduces delay jitter. We also found that this mechanism prevents additional energy consumption and prolongs network lifetime, resulting from the elative reduction of transmission failures and retransmissions.

Change in the Plant Temperature of Tomato by Fogging and Airflow in Plastic Greenhouse (포그분사 및 공기유동에 의한 온실재배 토마토의 엽온 변화)

  • Nam, Sang-Woon;Kim, Young-Shik;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • To investigate the influence of surrounding environment on the plant temperature and examine the effect of plant temperature control by fogging and airflow, plant temperature of tomato, inside and outside air temperature and relative humidity, solar radiation and wind speed were measured and analyzed under various experimental conditions in plastic greenhouse with two-fluid fogging systems and air circulation fans. According to the analysis of plant temperature and the change of inside and outside air temperature in each condition, inside air temperature and plant temperature were significantly higher than outside air temperature in the control and shading condition. However, in the fogging condition, inside air temperature was lower or slightly higher than outside air temperature. It showed that plant temperature could be kept with the temperature similar to or lower than inside air temperature in fogging and airflow condition. To derive the relationship between surrounding environmental factor and plant temperature, we did multiple regression analysis. The optimum regression equation for the temperature difference between plant and air included solar radiation, wind speed and vapor pressure deficit and RMS error was $0.8^{\circ}C$. To investigate whether the fogging and airflow contribute to reduce high temperature stress of plant, photosynthetic rate of tomato leaf was measured under the experimental conditions. Photosynthetic rate was the highest when using both fogging and airflow, and then fogging, airflow and lastly the control. So, we could assume that fogging and airflow can make better effect of plant temperature control to reduce high temperature stress of plant which can increase photosynthetic rate. It showed that the temperature difference between plant and air was highly affected by surrounding environment. Also, we could estimate plant temperature by measuring the surrounding environment, and use it for environment control to reduce the high temperature stress of plant. In addition, by using fogging and airflow, we can decrease temperature difference between plant and air, increase photosynthetic rate, and make proper environment for plants. We could conclude that both fogging and airflow are effective to reduce the high temperature stress of plant.

A Study on the Comparison of Injection Rate Measurement by the Bosch`s Method and the Zeuch`s Method (Bosch법과 Zeuch법에 의한 분사율 , 측정의 비교연구)

  • Ra, Jin-Hong;Kim, Jun-Hyo;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 1990
  • There have been many methods for measuring the injection rate of diesel engines, but the results of them are not always identical and the reason for the discordance is not clear. Besides, a single shot injection equipment has been used for the fuel spray and the combustion research of diesel engines, but the results of experiment using the equipment don't apply to a volleyed shot injection of real engines. This paper investigates the merits and faults of the Bosch's method and the Zeuch's method, at the same, this paper also compares the injection rates of single shot inject rates of single shot injection and a volleyed shot injected by the Bosch's method. the results are summarized as follows: (1) The measurement error of the Bosch's method is about $\pm$1%, therefore, its accuracy is reliable. (2) By the Bosch's method, as the speed and the load of fuel pump increase, the injection rate becomes higher, on the contrary, the injection period(ms) shortens as the speed increases and the load decreases. (3) In this experiment, the injection rate of a single shot injection is lower than that of a volleyed shot injection under the same conditions. (4) The bulk modulus of elasticity using the Zeuch's method increases in proportion to the back pressure. (5) The Zeuch's method is less accurate than the Bosch's method.

  • PDF

The Effect of Color Filter on the Reading Ability in Teenager with Irlen-Syndrome (얼렌증후군에서 컬러필터가 읽기능력에 미치는 영향)

  • Lee, Dong-Joon;Leem, Hyun-Sung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.2
    • /
    • pp.125-136
    • /
    • 2013
  • Purpose: The aim of this study was to investigate the effect of improving read speed with color filter or without color filter to improve reading disorder of teenager who were diagnosed as Meares-Irlen syndrome through survey inspection with Meares-Irlen syndrome visual stress (MISViS) score. Methods: MISViS subjects were selected from screening survey MISViS results given above 2.13 in the clinical criteria scores (MISViS score). Reading speed were measured quickly and efficiently the rate of reading via test in which randomly ordered common words are read aloud during a minute. Each of the subjects were worn a filter of the lowest concentration in each color filter group composed of 15 groups. Results: MISViS score of MISViS group and control group were 2.57 and 0.66, respectively. Results of reading speed with filter and without filter in MISViS group were $102.27{\pm}27.86$ wpm and $118.87{\pm}26.99$ wpm (p=0.001), respectively, as well as were $132.93{\pm}6.88$ wpm and $133.43{\pm}6.64$ wpm (p=0.131) in the normal group. Associated with error changes with filter and without filter between two groups, skipping in MISViS Group were from $0.25{\pm}0.62$ times to 0 times (p=0.191), Errors were from $1.83{\pm}1.69$ times to $0.17{\pm}0.38$ times (p = 0.004) and, repetitions were 0. skipping in control group were 0 times, errors were from $0.21{\pm}0.43$ times to $0.07{\pm}0.27$ times (p=0.336) and, repetitions were from $0.14{\pm}0.36$ times to 0 (p=0.165). The filter of blue series chosen in MISViS group had higher percentage (40%), whereas, subjects in normal group were more likely to prefer the filter of gray color (29%). Conclusions: This study showed that MISViS score have been used as a significant diagnosis for Irlen syndrome screening. This study found that wearing suitable color filter for MISViS patients were useful to improve learning with regard to reading. Unique color filter selection for MISViS subjects must be carefully considered since fit color filter are different personally.

Performance of Convolution Coding Underwater Acoustic Communication System on Frequency Selectivity Index (주파수 선택 지표에 따른 길쌈 부호 수중 음향 통신 시스템의 성능 평가)

  • Seo, Chulwon;Park, Jihyun;Park, Kyu-Chil;Shin, Jungchae;Jung, Jin Woo;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.494-501
    • /
    • 2013
  • The convolution code(CC) of code rate 1/2 as a forward error correction (FEC) in Quadrature Phase Shift Keying (QPSK) is applied to decrease bit error rate (BER) by background noise and multipath in shallow water acoustic channel. Ratio of transmitting signal bandwidth to channel coherence bandwidth is defined as frequency selectivity index. BER and bit energy-to-noise ratio gain of transmitted signal according to frequency selectivity index are evaluated. In the results of indoor water tank experiment, BER is well matched theoretical results at frequency selectivity index less than about 1.0. And bit energy-to-noise ratio gain is also matched theoretical value of 5 dB. BER is effectively decreased at frequency selective multipath channel with frequency selectivity index higher than 1.0. But bit energy-to-noise ratio greater than a certain size in terms of CC weaving is effective in reducing bit errors. In the results, the defined frequency selectivity index in this study could be applied to evaluate a performance of CC in multipath channel. Also it could effectively reduced BER in a low speed underwater acoustic communication system without an equalizer.

Temperature Control of Greenhouse Using Ventilation Window Adjustments by a Fuzzy Algorithm (퍼지제어에 의한 자연환기온실의 온도제어)

  • 정태상;민영봉;문경규
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.42-49
    • /
    • 2001
  • This study was carried out to develop a fuzzy control technique of ventilation window for controlling a temperature in a greenhouse. To reduce the fuzzy variables, the inside air temperature shop was taken as one of fuzzy variables, because the inside air temperature variation of a greenhouse by ventilation at the same window aperture is affected by difference between inside and outside air temperature, outside wind speed and the wind direction. Therefore, the antecedent variables for fuzzy algorithm were used the control error and its slop, which was same value as the inside air temperature slop during the control period, and the conclusion variable was used the window aperture opening rate. Through the basic and applicative control experiment with the control period of 3 minutes the optimum ranges of fuzzy variables were decided. The control error and its slop were taken as 3 and 1.5 times compared with target error in steady state, and the window opening rate were taken as 30% of full size of the window aperture. To evaluate the developed fuzzy algorithm in which the optimized 19 rules of fuzzy production were used, the performances of fuzzy control and PID control were compared. The temperature control errors by the fuzzy control and PID control were lower than 1.3$^{\circ}C$ and 2.2$^{\circ}C$ respectively. The accumulated operating size of the window, the number of operating and the number of inverse operating for the fuzzy control were 0.4 times, 0.5 times and 0.3 times of those compared with the PID control. Therefore, the fuzzy control can operating the window more smooth and reduce the operating energy by 1/2 times of PID control.

  • PDF