• Title/Summary/Keyword: speed

Search Result 43,212, Processing Time 0.055 seconds

Design of the Modified PID Speed Controller to Reduce the Speed Ripple (속도 리플 억제를 위한 수정된 PID 속도 제어기의 설계)

  • Kim, Hong-Min;Choo, Young-Bae;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • PMSM(Permanent Magnet Synchronous Motor) has periodic torque ripple from the cogging torque and load conditions. This paper proposes the modified PID speed controller to reduce the speed ripple of the PMSM. The proposed modified PID controller uses a selective D(Differential) control term according to the speed error and the differential of the speed error. The proposed speed controller produces an additional torque reference such as torque compensator based on PI controller according to the speed error and the differential of the speed error, and it can reduce the vibration of the conventional D-control term with reduced speed ripple. Since the additional torque reference of the proposed speed controller is changed by the sign of the speed error and the differential of the speed error, a simple function to determine the sign of the error is used to produce the compensated torque. The proposed control scheme is verified by the computer simulation and the experiments.

Expanding the MCS of Refinery Process Compressor through Operating-Speed Balancing at 10,500 rpm (정유공정 압축기의 10,500 rpm 운전속도 밸런싱을 통한 MCS의 확장)

  • Lee, An-Sung;Kim, Byung-Ok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.41-46
    • /
    • 2009
  • This paper deals with the operating-speed (high-speed) balancing of a refinery gasoline HDS (hydrodesulfurization) process recycle-gas 8-stages compressor rotor. A low-speed balancing condition of the rotor was measured as maintaining the G2.5 level. But an inspection run of operating-speed balancing condition, using tilting-pad journal bearings of actual use, showed that while it could be continuously-operated safely at a rated speed of 10,500 rpm, the rotor would not be able to run over 11,000 rpm as the vibration increased very sharply, approaching 11,000 rpm. In order to cure that a series of operating-speed balancing, which first calculated balance correction-weights by applying the influence coefficient measured and calculated at 10,500 rpm and then implemented correction works, was carried-out. The final operating-speed balancing results showed that the vibrations at the bearing pedestals represented very good levels of 0.2 mm/s by decreasing to as much as the 1/10 of the original vibrations and particularly, even at a targeted maximum continuous operating speed, MCS, of 11,500 rpm the vibrations represented about 1 mm/s, which is the operating-speed balancing vibration specification of API. Therefore, the expansion of MCS was successfully accomplished through the operating-speed balancing.

The Research about Engine Speed change Effect on HCCI Engine Combustion by Numerical Analysis (엔진회전속도의 변화가 HCCI엔진연소에 미치는 영향에 관한 수치해석 연구)

  • Lim, Ock-Taeck
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.126-133
    • /
    • 2011
  • In HCCI Engine, combustion is affected by change of compression speed corresponding to engine speed. The purpose of this study is to investigate the mechanism of influence of engine speed on HCCI combustion characteristics by using numerical analysis. At first, the influence of engine speed was shown. And then, in order to clarify the mechanism of influence of engine speed, results of kinetics computations were analyzed to investigate the elementary reaction path for heat release at transient temperatures by using contribution matrix. In results, as engine speed increased, in-cylinder gas temperature and pressure at ignition start increased. And ignition start timing was retarded and combustion duration was lengthened on crank angle basis. On time basis, ignition start timing was advanced and combustion duration was shortened. High engine speed showed higher robustness to change of initial temperature than low engine speed. Because of its high robustness, selecting high engine speed was efficient for keeping stable operation in real engine which include variation of initial temperature by various factors. The variation of engine speed did not change the reaction path. But, as engine speed increased, the temperature that each elementary reaction would be active became high and reaction speed quicken. Rising the in-cylinder gas temperature of combustion start was caused by these gaps of temperature.

Field-Oriented Speed Control of Induction Machine without Speed Sensor in Overall Speed Range (속도검출기가 없는 유도전동기의 광범위한 속도 영역에서의 자속 기준 속도 제어)

  • Ryu, Hyeong-Min;Ha, Jeong-Ik;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.338-344
    • /
    • 2000
  • This paper proposes a field-oriented control strategy without speed sensor in overall speed range. At low speed region including zero speed, the electrical saliency which is due to the main flux saturation is used in order to estimate an instantaneous flux position. This electrical saliency can be obtained from the difference of high frequency impedance by the high frequency signal injection. This method enables the stable operation at zero speed or stator frequency even under heavily loaded condition. However, because of the high frequency signal injection the loss and noise in motor increase and the voltage margin is reduced as the motor speed increases. Therefore, this algorithm must be supplemented with the algorithm based on the electrical model of motor, which is conventionally used in the region except the low speed. This paper proposes the combination algorithm between the high frequency signal infection method and the adaptive observer, in which the rotor flux and motor speed can be simultaneously estimated by the adaptive control theory. This combination algorithm enables the stable operation of field-oriented speed control without speed sensor in overall speed range. This is verified by experimental results.

  • PDF

Sensorless Speed Control of Induction motor using the Intelligent Speed Estimator (지능형 속도 추정기를 이용한 유도전동기의 센서리스 속도제어)

  • Park, Jin-Su;Choi, Sung-Dae;Kim, Sang-Hoon;Yoon, Kwang-Ho;Ban, Gi-Jong;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.660-662
    • /
    • 2004
  • This paper proposes an Intelligent Speed Estimator in order to realize the speed-sensorless vector control of an induction motor. Intelligent Speed Estimator used Model Reference Adaptive System which has Fuzzy-Neural adaptive mechanism as Speed Estimation method. The Intelligent Speed Estimator estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. The Intelligent Speed Estimator reduces the error of the rotor flux between the voltage flux model and the current flux model using the error and the change of error as input of the Estimator. The computer simulation is executed to verify the propriety and the effectiveness of the proposed speed estimator.

  • PDF

A Study on the Speed Calculation and Speed Control Based on the Induction Motor Terminal Quantities (유도 전동기 단자전압 전류에 의한 속도계산 및 속도제어에 관한 연구)

  • 박민호;설승기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.445-451
    • /
    • 1986
  • The speed control system of induction motor without speed sensor is proposed in this paper. The speed of induction motor is calculated by motor terminal voltages and currents. The equations for speed calculation are derived and they are implemented on 16bit micro-processor Mc68000. The software and hardware for the Mc 68000 is developed. To prove the validity of the proposed method, the calculated speed is compared with the measured speed. The maximum speed error is nearly 1% in the overall range. The proposed speed calculation method is applied to the Current Source Inverter(CSI) fed induction motor drive system. The experimental results show the good dynamics and the resonable speed control accuracy.

  • PDF

FUZZY ESTIMATION OF VEHICLE SPEED USING AN ACCELEROMETER AND WHEEL SENSORS

  • HWANG J. K.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.359-365
    • /
    • 2005
  • The absolute longitudinal speed of a vehicle is estimated by using data from an accelerometer of the vehicle and wheel speed sensors of a standard 50-tooth antilock braking system. An intuitive solution to this problem is, 'When wheel slip is low, calculate the vehicle velocity from the wheel speeds; when wheel slip is high, calculate the vehicle speed by integrating signal of the accelerometer.' The speed estimator weighted with fuzzy logic is introduced to implement the above concept, which is formulated as an estimation method. And the method is improved through experiments by how to calculate speed from acceleration signal and slip ratios. It is verified experimentally to usefulness of estimation speed of a vehicle. And the experimental result shows that the estimated vehicle longitudinal speed has only a $6\%$ worst-case error during a hard braking maneuver lasting a few seconds.

Design of a Fuzzy-Tuning High Gain Observer for Speed-Sensorless Control of an AC Servo Motor (교류 서보 전동기 속도센서리스 제어를 위한 퍼지 동조 고이득 관측기 설계)

  • Kim, Sang-Hoon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.705-712
    • /
    • 2005
  • This paper deals with speed-sensorless control of an AC servo motor using Fuzzy-Tuning High Gain Observer(FTHGO). Resolver or encoder can be used to measure a rotor speed, but it has a limit to detect motor speed precisely. To solve this problem, it is studied to measure a speed of an AC servo motor without sensor. In this paper, the gain of an observer to estimate motor speed is properly set up and designed using the fuzzy control theory. It calculates the differentiation of the rotor current of the AC motor and estimates the rotor speed using it. Proposed speed sensorless control is performed using the estimated speed as the control variable. Designed FTHGO is applied to AC servo motor to verify the feasibility of the proposed observer. Feasibility of the FTHGO proposed in this paper is proven comparing the experimental results with/without the speed sensor.

Low Speed Control of Induction Machine by Instantaneous Speed Estimation (순시 속도 추정에 의한 유도 전동기의 저속 운전)

  • Kwon, Bong-Hyun;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.100-102
    • /
    • 1993
  • This paper proposes a control method of induction machine at a low speed range. When an encoder is used for speed detection, we usually obtain speed information from the increased pulse number. At low speed range, however, we can get only average speed between encoder pulses and it makes speed controller unstable. By using a disturbance observer and torque current, it is possible to estimate accurate speed information. The simulation and experiment show that the stable speed control is performed at a low speed with proposed algorithm.

  • PDF

Speed Sensorless Vector Control of High-Speed IM using Intelligent Control Algorithm (지능제어 알고리즘을 이용한 초고속 유도전동기의 속도 센서리스 제어)

  • Kim, Yun-Ho;Hong, Ik-Pyo;Lee, Byeong-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.426-430
    • /
    • 1999
  • In this paper, a speed sensorless algorithm for a high-speed induction motor is proposed. The proposed algorithm simply estimates rotor speed by integrating the deviation between the command current value of a controller and the real current value of the motor. To estimate rotor speed without a speed sensor, a fuzzy speed controller and a neural network speed estimator are applied. Computer simulation and implementation of the proposed system is described.

  • PDF